ﻻ يوجد ملخص باللغة العربية
Random walks on a group $G$ model many natural phenomena. A random walk is defined by a probability measure $p$ on $G$. We are interested in asymptotic properties of the random walks and in particular in the linear drift and the asymptotic entropy. If the geometry of the group is rich, then these numbers are both positive and the way of dependence on $p$ is itself a property of $G$. In this note, we review recent results about the regularity of the drift and the entropy for free groups, free products and hyperbolic groups.
In this article we prove existence of the asymptotic entropy for isotropic random walks on regular Fuchsian buildings. Moreover, we give formulae for the asymptotic entropy, and prove that it is equal to the rate of escape of the random walk with res
We study the asymptotic behaviour of random walks on topological abelian groups $G$. Our main result is a sufficient condition for one random walk to overtake another in the stochastic order induced by any suitably large positive cone $G_+ subseteq G
We prove existence of asymptotic entropy of random walks on regular languages over a finite alphabet and we give formulas for it. Furthermore, we show that the entropy varies real-analytically in terms of probability measures of constant support, whi
We study random walks on the giant component of the ErdH{o}s-Renyi random graph ${cal G}(n,p)$ where $p=lambda/n$ for $lambda>1$ fixed. The mixing time from a worst starting point was shown by Fountoulakis and Reed, and independently by Benjamini, Ko
We consider random walks on the set of all words over a finite alphabet such that in each step only the last two letters of the current word may be modified and only one letter may be adjoined or deleted. We assume that the transition probabilities d