ﻻ يوجد ملخص باللغة العربية
Phosphorene, a new elemental two dimensional (2D) material recently isolated by mechanical exfoliation, holds the feature of a direct band gap of around 2.0 eV, overcoming graphenes weaknesses (zero band gap) to realize the potential application in optoelectronic devices. Constructing van der Waals heterostructures is an efficient approach to modulate the band structure, to advance the charge separation efficiency, and thus to optimize the optoelectronic properties. Here, we theoretically investigated three type-II heterostructures based on perfect phosphorene and its doped monolayers interfaced with TiO$_2$(110) surface. Doping in phosphorene has a tunability on built-in potential, charge transfer, light absorbance, as well as electron dynamics, which helps to optimize the light absorption efficiency. Three excitonic solar cells (XSCs) based on the phosphorene$-$TiO$_2$ heterojunctions have been proposed, which exhibit high power conversion efficiencies dozens of times higher than conventional solar cells, comparable to MoS$_2$/WS$_2$ XSC. The nonadiabatic molecular dynamics within the time-dependent density functional theory framework shows ultrafast electron transfer time of 6.1$-$10.8 fs, and slow electron$-$hole recombination of 0.58$-$1.08 ps, yielding $>98%$ quantum efficiency for charge separation, further guaranteeing the practical power conversion efficiencies in XSC.
A first principles approach is presented for calculations of optical -- ultraviolet (UV) spectra including excitonic effects. The approach is based on Bethe-Salpeter equation calculations using the textsc{NBSE} code combined with ground-state density
Due to their characteristic geometry, TiO$_2$ nanotubes (TNTs), suitably doped by metal-substitution to enhance their photocatalytic properties, have a high potential for applications such as clean fuel production. In this context, we present a detai
The phase transition between type-I and type-II Dirac semimetals will reveal a series of significant physical properties because of their completely distinct electronic, optical and magnetic properties. However, no mechanism and materials have been p
Due to the photo-instability and hysteresis of TiO$_2$ electron transport layer (ETL) in perovskite solar cells (PSCs), novel electron transport materials are highly demanded. Here, we show ideal band alignment between La-doped BaSnO$_3$ (LBSO) and m
Hybrid AMX3 perovskites (A=Cs, CH3NH3; M=Sn, Pb; X=halide) have revolutionized the scenario of emerging photovoltaic technologies. Introduced in 2009 by Kojima et al., a rapid evolution very recently led to 15% efficient solar cells. CH3NH3PbI3 has s