ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast and High Quality Highlight Removal from A Single Image

143   0   0.0 ( 0 )
 نشر من قبل Dongsheng An
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Specular reflection exists widely in photography and causes the recorded color deviating from its true value, so fast and high quality highlight removal from a single nature image is of great importance. In spite of the progress in the past decades in highlight removal, achieving wide applicability to the large diversity of nature scenes is quite challenging. To handle this problem, we propose an analytic solution to highlight removal based on an L2 chromaticity definition and corresponding dichromatic model. Specifically, this paper derives a normalized dichromatic model for the pixels with identical diffuse color: a unit circle equation of projection coefficients in two subspaces that are orthogonal to and parallel with the illumination, respectively. In the former illumination orthogonal subspace, which is specular-free, we can conduct robust clustering with an explicit criterion to determine the cluster number adaptively. In the latter illumination parallel subspace, a property called pure diffuse pixels distribution rule (PDDR) helps map each specular-influenced pixel to its diffuse component. In terms of efficiency, the proposed approach involves few complex calculation, and thus can remove highlight from high resolution images fast. Experiments show that this method is of superior performance in various challenging cases.



قيم البحث

اقرأ أيضاً

Removing undesirable specular highlight from a single input image is of crucial importance to many computer vision and graphics tasks. Existing methods typically remove specular highlight for medical images and specific-object images, however, they c annot handle the images with text. In addition, the impact of specular highlight on text recognition is rarely studied by text detection and recognition community. Therefore, in this paper, we first raise and study the text-aware single image specular highlight removal problem. The core goal is to improve the accuracy of text detection and recognition by removing the highlight from text images. To tackle this challenging problem, we first collect three high-quality datasets with fine-grained annotations, which will be appropriately released to facilitate the relevant research. Then, we design a novel two-stage network, which contains a highlight detection network and a highlight removal network. The output of highlight detection network provides additional information about highlight regions to guide the subsequent highlight removal network. Moreover, we suggest a measurement set including the end-to-end text detection and recognition evaluation and auxiliary visual quality evaluation. Extensive experiments on our collected datasets demonstrate the superior performance of the proposed method.
Many images shared over the web include overlaid objects, or visual motifs, such as text, symbols or drawings, which add a description or decoration to the image. For example, decorative text that specifies where the image was taken, repeatedly appea rs across a variety of different images. Often, the reoccurring visual motif, is semantically similar, yet, differs in location, style and content (e.g. text placement, font and letters). This work proposes a deep learning based technique for blind removal of such objects. In the blind setting, the location and exact geometry of the motif are unknown. Our approach simultaneously estimates which pixels contain the visual motif, and synthesizes the underlying latent image. It is applied to a single input image, without any user assistance in specifying the location of the motif, achieving state-of-the-art results for blind removal of both opaque and semi-transparent visual motifs.
Blind pansharpening addresses the problem of generating a high spatial-resolution multi-spectral (HRMS) image given a low spatial-resolution multi-spectral (LRMS) image with the guidance of its associated spatially misaligned high spatial-resolution panchromatic (PAN) image without parametric side information. In this paper, we propose a fast approach to blind pansharpening and achieve state-of-the-art image reconstruction quality. Typical blind pansharpening algorithms are often computationally intensive since the blur kernel and the target HRMS image are often computed using iterative solvers and in an alternating fashion. To achieve fast blind pansharpening, we decouple the solution of the blur kernel and of the HRMS image. First, we estimate the blur kernel by computing the kernel coefficients with minimum total generalized variation that blur a downsampled version of the PAN image to approximate a linear combination of the LRMS image channels. Then, we estimate each channel of the HRMS image using local Laplacian prior to regularize the relationship between each HRMS channel and the PAN image. Solving the HRMS image is accelerated by both parallelizing across the channels and by fast numerical algorithms for each channel. Due to the fast scheme and the powerful priors we used on the blur kernel coefficients (total generalized variation) and on the cross-channel relationship (local Laplacian prior), numerical experiments demonstrate that our algorithm outperforms state-of-the-art model-based counterparts in terms of both computational time and reconstruction quality of the HRMS images.
Raindrops adhered to a glass window or camera lens can severely hamper the visibility of a background scene and degrade an image considerably. In this paper, we address the problem by visually removing raindrops, and thus transforming a raindrop degr aded image into a clean one. The problem is intractable, since first the regions occluded by raindrops are not given. Second, the information about the background scene of the occluded regions is completely lost for most part. To resolve the problem, we apply an attentive generative network using adversarial training. Our main idea is to inject visual attention into both the generative and discriminative networks. During the training, our visual attention learns about raindrop regions and their surroundings. Hence, by injecting this information, the generative network will pay more attention to the raindrop regions and the surrounding structures, and the discriminative network will be able to assess the local consistency of the restored regions. This injection of visual attention to both generative and discriminative networks is the main contribution of this paper. Our experiments show the effectiveness of our approach, which outperforms the state of the art methods quantitatively and qualitatively.
106 - Yunfei Liu , Yu Li , Shaodi You 2019
Reflection is common in images capturing scenes behind a glass window, which is not only a disturbance visually but also influence the performance of other computer vision algorithms. Single image reflection removal is an ill-posed problem because th e color at each pixel needs to be separated into two values, i.e., the desired clear background and the reflection. To solve it, existing methods propose priors such as smoothness, color consistency. However, the low-level priors are not reliable in complex scenes, for instance, when capturing a real outdoor scene through a window, both the foreground and background contain both smooth and sharp area and a variety of color. In this paper, inspired by the fact that human can separate the two layers easily by recognizing the objects, we use the object semantic as guidance to force the same semantic object belong to the same layer. Extensive experiments on different datasets show that adding the semantic information offers a significant improvement to reflection separation. We also demonstrate the applications of the proposed method to other computer vision tasks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا