ترغب بنشر مسار تعليمي؟ اضغط هنا

Semantic Guided Single Image Reflection Removal

107   0   0.0 ( 0 )
 نشر من قبل Yunfei Liu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Reflection is common in images capturing scenes behind a glass window, which is not only a disturbance visually but also influence the performance of other computer vision algorithms. Single image reflection removal is an ill-posed problem because the color at each pixel needs to be separated into two values, i.e., the desired clear background and the reflection. To solve it, existing methods propose priors such as smoothness, color consistency. However, the low-level priors are not reliable in complex scenes, for instance, when capturing a real outdoor scene through a window, both the foreground and background contain both smooth and sharp area and a variety of color. In this paper, inspired by the fact that human can separate the two layers easily by recognizing the objects, we use the object semantic as guidance to force the same semantic object belong to the same layer. Extensive experiments on different datasets show that adding the semantic information offers a significant improvement to reflection separation. We also demonstrate the applications of the proposed method to other computer vision tasks.



قيم البحث

اقرأ أيضاً

78 - Zheng Dong , Ke Xu , Yin Yang 2020
This paper proposes a novel location-aware deep-learning-based single image reflection removal method. Our network has a reflection detection module to regress a probabilistic reflection confidence map, taking multi-scale Laplacian features as inputs . This probabilistic map tells if a region is reflection-dominated or transmission-dominated, and it is used as a cue for the network to control the feature flow when predicting the reflection and transmission layers. We design our network as a recurrent network to progressively refine reflection removal results at each iteration. The novelty is that we leverage Laplacian kernel parameters to emphasize the boundaries of strong reflections. It is beneficial to strong reflection detection and substantially improves the quality of reflection removal results. Extensive experiments verify the superior performance of the proposed method over state-of-the-art approaches. Our code and the pre-trained model can be found at https://github.com/zdlarr/Location-aware-SIRR.
Rain streak removal is an important issue and has recently been investigated extensively. Existing methods, especially the newly emerged deep learning methods, could remove the rain streaks well in many cases. However the essential factor in the gene rative procedure of the rain streaks, i.e., the motion blur, which leads to the line pattern appearances, were neglected by the deep learning rain streaks approaches and this resulted in over-derain or under-derain results. In this paper, we propose a novel rain streak removal approach using a kernel guided convolutional neural network (KGCNN), achieving the state-of-the-art performance with simple network architectures. We first model the rain streak interference with its motion blur mechanism. Then, our framework starts with learning the motion blur kernel, which is determined by two factors including angle and length, by a plain neural network, denoted as parameter net, from a patch of the texture component. Then, after a dimensionality stretching operation, the learned motion blur kernel is stretched into a degradation map with the same spatial size as the rainy patch. The stretched degradation map together with the texture patch is subsequently input into a derain convolutional network, which is a typical ResNet architecture and trained to output the rain streaks with the guidance of the learned motion blur kernel. Experiments conducted on extensive synthetic and real data demonstrate the effectiveness of the proposed method, which preserves the texture and the contrast while removing the rain streaks.
Removing undesirable reflections from a single image captured through a glass window is of practical importance to visual computing systems. Although state-of-the-art methods can obtain decent results in certain situations, performance declines signi ficantly when tackling more general real-world cases. These failures stem from the intrinsic difficulty of single image reflection removal -- the fundamental ill-posedness of the problem, and the insufficiency of densely-labeled training data needed for resolving this ambiguity within learning-based neural network pipelines. In this paper, we address these issues by exploiting targeted network enhancements and the novel use of misaligned data. For the former, we augment a baseline network architecture by embedding context encoding modules that are capable of leveraging high-level contextual clues to reduce indeterminacy within areas containing strong reflections. For the latter, we introduce an alignment-invariant loss function that facilitates exploiting misaligned real-world training data that is much easier to collect. Experimental results collectively show that our method outperforms the state-of-the-art with aligned data, and that significant improvements are possible when using additional misaligned data.
101 - Donghoon Lee , Ming-Hsuan Yang , 2018
Single image reflection separation is an ill-posed problem since two scenes, a transmitted scene and a reflected scene, need to be inferred from a single observation. To make the problem tractable, in this work we assume that categories of two scenes are known. It allows us to address the problem by generating both scenes that belong to the categories while their contents are constrained to match with the observed image. A novel network architecture is proposed to render realistic images of both scenes based on adversarial learning. The network can be trained in a weakly supervised manner, i.e., it learns to separate an observed image without corresponding ground truth images of transmission and reflection scenes which are difficult to collect in practice. Experimental results on real and synthetic datasets demonstrate that the proposed algorithm performs favorably against existing methods.
134 - Hao Tang , Xiaojuan Qi , Dan Xu 2020
We propose a novel Edge guided Generative Adversarial Network (EdgeGAN) for photo-realistic image synthesis from semantic layouts. Although considerable improvement has been achieved, the quality of synthesized images is far from satisfactory due to two largely unresolved challenges. First, the semantic labels do not provide detailed structural information, making it difficult to synthesize local details and structures. Second, the widely adopted CNN operations such as convolution, down-sampling and normalization usually cause spatial resolution loss and thus are unable to fully preserve the original semantic information, leading to semantically inconsistent results (e.g., missing small objects). To tackle the first challenge, we propose to use the edge as an intermediate representation which is further adopted to guide image generation via a proposed attention guided edge transfer module. Edge information is produced by a convolutional generator and introduces detailed structure information. Further, to preserve the semantic information, we design an effective module to selectively highlight class-dependent feature maps according to the original semantic layout. Extensive experiments on two challenging datasets show that the proposed EdgeGAN can generate significantly better results than state-of-the-art methods. The source code and trained models are available at https://github.com/Ha0Tang/EdgeGAN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا