ﻻ يوجد ملخص باللغة العربية
Reflection is common in images capturing scenes behind a glass window, which is not only a disturbance visually but also influence the performance of other computer vision algorithms. Single image reflection removal is an ill-posed problem because the color at each pixel needs to be separated into two values, i.e., the desired clear background and the reflection. To solve it, existing methods propose priors such as smoothness, color consistency. However, the low-level priors are not reliable in complex scenes, for instance, when capturing a real outdoor scene through a window, both the foreground and background contain both smooth and sharp area and a variety of color. In this paper, inspired by the fact that human can separate the two layers easily by recognizing the objects, we use the object semantic as guidance to force the same semantic object belong to the same layer. Extensive experiments on different datasets show that adding the semantic information offers a significant improvement to reflection separation. We also demonstrate the applications of the proposed method to other computer vision tasks.
This paper proposes a novel location-aware deep-learning-based single image reflection removal method. Our network has a reflection detection module to regress a probabilistic reflection confidence map, taking multi-scale Laplacian features as inputs
Rain streak removal is an important issue and has recently been investigated extensively. Existing methods, especially the newly emerged deep learning methods, could remove the rain streaks well in many cases. However the essential factor in the gene
Removing undesirable reflections from a single image captured through a glass window is of practical importance to visual computing systems. Although state-of-the-art methods can obtain decent results in certain situations, performance declines signi
Single image reflection separation is an ill-posed problem since two scenes, a transmitted scene and a reflected scene, need to be inferred from a single observation. To make the problem tractable, in this work we assume that categories of two scenes
We propose a novel Edge guided Generative Adversarial Network (EdgeGAN) for photo-realistic image synthesis from semantic layouts. Although considerable improvement has been achieved, the quality of synthesized images is far from satisfactory due to