ﻻ يوجد ملخص باللغة العربية
Quantum state transfer between distant nodes is at the heart of quantum processing and quantum networking. Stimulated by this, we propose a scheme where one can highly achieve quantum state transfer between sites in a cavity quantum optomechanical network. There, each individual cell site is composed of a localized mechanical mode which interacts with a laser-driven cavity mode via radiation pressure, and photons exchange between neighboring sites is allowed. After the diagonalization of the Hamiltonian of each cell, we show that the system can be reduced to an effective Hamiltonian of two decoupled bosonic chains, and therefore we can apply the well-known results regarding quantum state transfer in conjuction with an additional condition on the transfer times. In fact, we show that our transfer protocol works for any arbitrary quantum state, a result that we will illustrate within the red sideband regime. Finally, in order to give a more realistic scenario we take into account the effects of independent thermal reservoirs for each site. Thus, solving the standard master equation within the Born-Markov approximation, we reassure both the effective model as well as the feasibility of our protocol.
We show that optomechanical systems in the quantum regime can be used to demonstrate EPR-type quantum entanglement between the optical field and the mechanical oscillator, via quantum-state steering. Namely, the conditional quantum state of the mecha
We propose a technique for robust optomechanical state transfer using phase-tailored composite pulse driving with constant amplitude. Our proposal is inspired by coherent control techniques in lossless driven qubits. We demonstrate that there exist o
Utilizing the tools of quantum optics to prepare and manipulate quantum states of motion of a mechanical resonator is currently one of the most promising routes to explore non-classicality at a macroscopic scale. An important quantum optomechanical t
Josephson junction arrays can be used as quantum channels to transfer quantum information between distant sites. In this work we discuss simple protocols to realize state transfer with high fidelity. The channels do not require complicate gating but
We introduce a method that can orthogonalize any pure continuous variable quantum state, i.e. generate a state $|psi_perp>$ from $|psi>$ where $<psi|psi_perp> = 0$, which does not require significant a priori knowledge of the input state. We illustra