ﻻ يوجد ملخص باللغة العربية
We show that optomechanical systems in the quantum regime can be used to demonstrate EPR-type quantum entanglement between the optical field and the mechanical oscillator, via quantum-state steering. Namely, the conditional quantum state of the mechanical oscillator can be steered into different quantum states depending the choice made on which quadrature of the out-going field is to be measured via homodyne detection. More specifically, if quantum radiation pressure force dominates over thermal force, the oscillators quantum state is steerable with a photodetection efficiency as low as 50%, approaching the ideal limit shown by Wiseman and Gambetta [Phys. Rev. Lett. {bf 108}, 220402 (2012)]. We also show that requirement for steerability is the same as those for achieving sub-Heisenberg state tomography using the same experimental setup.
Quantum state transfer (QST) provides a method to send arbitrary quantum states from one system to another. Such a concept is crucial for transmitting quantum information into the quantum memory, quantum processor, and quantum network. The standard b
Quantum state transfer between distant nodes is at the heart of quantum processing and quantum networking. Stimulated by this, we propose a scheme where one can highly achieve quantum state transfer between sites in a cavity quantum optomechanical ne
We study the quantum dynamics of a Michelson interferometer with Fabry-Perot cavity arms and one movable end mirror, and driven by a single photon --- an optomechanical device previously studied by Marshall et al. as a device that searches for gravit
The theory of phase control of coherence, entanglement and quantum steering is developed for an optomechanical system composed of a single mode cavity containing a partially transmitting dielectric membrane and driven by short laser pulses. The close
We investigate whether paradigmatic measurements for quantum state tomography, namely mutually unbiased bases and symmetric informationally complete measurements, can be employed to certify quantum correlations. For this purpose, we identify a simple