ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum-state steering in optomechanical devices

182   0   0.0 ( 0 )
 نشر من قبل Haixing Miao
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that optomechanical systems in the quantum regime can be used to demonstrate EPR-type quantum entanglement between the optical field and the mechanical oscillator, via quantum-state steering. Namely, the conditional quantum state of the mechanical oscillator can be steered into different quantum states depending the choice made on which quadrature of the out-going field is to be measured via homodyne detection. More specifically, if quantum radiation pressure force dominates over thermal force, the oscillators quantum state is steerable with a photodetection efficiency as low as 50%, approaching the ideal limit shown by Wiseman and Gambetta [Phys. Rev. Lett. {bf 108}, 220402 (2012)]. We also show that requirement for steerability is the same as those for achieving sub-Heisenberg state tomography using the same experimental setup.



قيم البحث

اقرأ أيضاً

Quantum state transfer (QST) provides a method to send arbitrary quantum states from one system to another. Such a concept is crucial for transmitting quantum information into the quantum memory, quantum processor, and quantum network. The standard b enchmark of QST is the average fidelity between the prepared and received states. In this work, we provide a new benchmark which reveals the non-classicality of QST based on spatio-temporal steering (STS). More specifically, we show that the local-hidden-state (LHS) model in STS can be viewed as the classical strategy of state transfer. Therefore, we can quantify the non-classicality of QST process by measuring the spatio-temporal steerability. We then apply the spatio-temporal steerability measurement technique to benchmark quantum devices including the IBM quantum experience and QuTech quantum inspire under QST tasks. The experimental results show that the spatio-temporal steerability decreases as the circuit depth increases, and the reduction agrees with the noise model, which refers to the accumulation of errors during the QST process. Moreover, we provide a quantity to estimate the signaling effect which could result from gate errors or intrinsic non-Markovian effect of the devices.
Quantum state transfer between distant nodes is at the heart of quantum processing and quantum networking. Stimulated by this, we propose a scheme where one can highly achieve quantum state transfer between sites in a cavity quantum optomechanical ne twork. There, each individual cell site is composed of a localized mechanical mode which interacts with a laser-driven cavity mode via radiation pressure, and photons exchange between neighboring sites is allowed. After the diagonalization of the Hamiltonian of each cell, we show that the system can be reduced to an effective Hamiltonian of two decoupled bosonic chains, and therefore we can apply the well-known results regarding quantum state transfer in conjuction with an additional condition on the transfer times. In fact, we show that our transfer protocol works for any arbitrary quantum state, a result that we will illustrate within the red sideband regime. Finally, in order to give a more realistic scenario we take into account the effects of independent thermal reservoirs for each site. Thus, solving the standard master equation within the Born-Markov approximation, we reassure both the effective model as well as the feasibility of our protocol.
We study the quantum dynamics of a Michelson interferometer with Fabry-Perot cavity arms and one movable end mirror, and driven by a single photon --- an optomechanical device previously studied by Marshall et al. as a device that searches for gravit y decoherence. We obtain an exact analytical solution for the systems quantum mechanical equations of motion, including details about the exchange of the single photon between the cavity mode and the external continuum. The resulting time evolution of the interferometers fringe visibility displays interesting new features when the incoming photons frequency uncertainty is narrower or comparable to the cavitys line width --- only in the limiting case of much broader-band photon does the result return to that of Marshall et al., but in this case the photon is not very likely to enter the cavity and interact with the mirror, making the experiment less efficient and more susceptible to imperfections. In addition, we show that in the strong-coupling regime, by engineering the incoming photons wave function, it is possible to prepare the movable mirror into an arbitrary quantum state of a multi-dimensional Hilbert space.
72 - F. X. Sun , D. Mao , Y. T. Dai 2017
The theory of phase control of coherence, entanglement and quantum steering is developed for an optomechanical system composed of a single mode cavity containing a partially transmitting dielectric membrane and driven by short laser pulses. The close d loop in the coupling creates interfering channels which depend on the relative phase of the coupling strengths of the field modes to the mechanical mode. We show several interesting phase dependent effects such as reversible population transfer from one field mode to the other, creation of collective modes, and induced coherence without induced emission. These effects result from perfect mutual coherence between the field modes which is preserved even if one of the modes is not populated. Depending on the phase, the field modes can act on the mechanical mode collectively or individually resulting, respectively, in tripartite or bipartite entanglement. In addition, we examine the phase sensitivity of quantum steering of the mechanical mode by the field modes is investigated. Deterministic phase transfer of the steering from bipartite to collective is predicted and optimum steering corresponding to perfect EPR state can be achieved. These different types of quantum steering can be distinguished experimentally by measuring the coincidence rate between two detectors adjusted to collect photons of the output cavity modes. In particular, we find that the minima of the interference pattern of the coincidence rate signal the bipartite steering, while the maxima signal the collective steering.
We investigate whether paradigmatic measurements for quantum state tomography, namely mutually unbiased bases and symmetric informationally complete measurements, can be employed to certify quantum correlations. For this purpose, we identify a simple and noise-robust correlation witness for entanglement detection, steering and nonlocality that can be evaluated based on the outcome statistics obtained in the tomography experiment. This allows us to perform state tomography on entangled qutrits, a test of Einstein-Podolsky-Rosen steering and a Bell inequality test, all within a single experiment. We also investigate the trade-off between quantum correlations and subsets of tomographically complete measurements as well as the quantification of entanglement in the different scenarios. Finally, we perform a photonics experiment in which we demonstrate quantum correlations under these flexible assumptions, namely with both parties trusted, one party untrusted and both parties untrusted.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا