ﻻ يوجد ملخص باللغة العربية
We consider the issue of describing all self-adjoint idempotents (projections) in $L^1(G)$ when $G$ is a unimodular locally compact group. The approach is to take advantage of known facts concerning subspaces of the Fourier-Stieltjes and Fourier algebras of $G$ and the topology of the dual space of $G$. We obtain an explicit description of any projection in $L^1(G)$ which happens to also lie in the coefficient space of a finite direct sum of irreducible representations. This leads to a complete description of all projections in $L^1(G)$ for $G$ belonging to a class of groups that includes $SL(2,R)$ and all almost connected nilpotent locally compact groups.
We obtain a slow exponential growth estimate for the spherical principal series representation rho_s of Lie group Sp(n, 1) at the edge (Re(s)=1) of Cowlings strip (|Re(s)|<1) on the Sobolev space H^alpha(G/P) when alpha is the critical value Q/2=2n+1
In this paper we give a simple proof of the endpoint Besov-Lorentz estimate $$ |I_alpha F|_{dot{B}^{0,1}_{d/(d-alpha),1}(mathbb{R}^d;mathbb{R}^k)} leq C |F |_{L^1(mathbb{R}^d;mathbb{R}^k)} $$ for all $F in L^1(mathbb{R}^d;mathbb{R}^k)$ which sa
Let $A$ be a unital AF-algebra whose Murray-von Neumann order of projections is a lattice. For any two equivalence classes $[p]$ and $[q]$ of projections we write $[p]sqsubseteq [q]$ iff for every primitive ideal $mathfrak p$ of $A$ either $p/mathfra
We develop a symbol calculus for normal bimodule maps over a masa that is the natural analogue of the Schur product theory. Using this calculus we are able to easily give a complete description of the ranges of contractive normal bimodule idempotents
Generalized entropic projections and dominating points are solutions to convex minimization problems related to conditional laws of large numbers. They appear in many areas of applied mathematics such as statistical physics, information theory, mathe