ﻻ يوجد ملخص باللغة العربية
Generalized entropic projections and dominating points are solutions to convex minimization problems related to conditional laws of large numbers. They appear in many areas of applied mathematics such as statistical physics, information theory, mathematical statistics, ill-posed inverse problems or large deviation theory. By means of convex conjugate duality and functional analysis, criteria are derived for their existence. Representations of the generalized entropic projections are obtained: they are the ``measure component of some extended entropy minimization problem.
Consider the projection of an $n$-dimensional random vector onto a random $k_n$-dimensional basis, $k_n leq n$, drawn uniformly from the Haar measure on the Stiefel manifold of orthonormal $k_n$-frames in $mathbb{R}^n$, in three different asymptotic
Accurate estimation of tail probabilities of projections of high-dimensional probability measures is of relevance in high-dimensional statistics and asymptotic geometric analysis. For fixed $p in (1,infty)$, let $(X^{(n,p)})$ and $(theta^n)$ be indep
Given an $n$-dimensional random vector $X^{(n)}$ , for $k < n$, consider its $k$-dimensional projection $mathbf{a}_{n,k}X^{(n)}$, where $mathbf{a}_{n,k}$ is an $n times k$-dimensional matrix belonging to the Stiefel manifold $mathbb{V}_{n,k}$ of orth
For $ninmathbb N$ let $Theta^{(n)}$ be a random vector uniformly distributed on the unit sphere $mathbb S^{n-1}$, and consider the associated random probability measure $mu_{Theta^{(n)}}$ given by setting [ mu_{Theta^{(n)}}(A) := mathbb{P} left[ lang
Let $A$ be a unital AF-algebra whose Murray-von Neumann order of projections is a lattice. For any two equivalence classes $[p]$ and $[q]$ of projections we write $[p]sqsubseteq [q]$ iff for every primitive ideal $mathfrak p$ of $A$ either $p/mathfra