ﻻ يوجد ملخص باللغة العربية
We present the details of the analytic calculation of the three-loop angle-dependent cusp anomalous dimension in QCD and its supersymmetric extensions, including the maximally supersymmetric $mathcal{N}=4$ super Yang-Mills theory. The three-loop result in the latter theory is new and confirms a conjecture made in our previous paper. We study various physical limits of the cusp anomalous dimension and discuss its relation to the quark-antiquark potential including the effects of broken conformal symmetry in QCD. We find that the cusp anomalous dimension viewed as a function of the cusp angle and the new effective coupling given by light-like cusp anomalous dimension reveals a remarkable universality property -- it takes the same form in QCD and its supersymmetric extensions, to three loops at least. We exploit this universality property and make use of the known result for the three-loop quark-antiquark potential to predict the special class of nonplanar corrections to the cusp anomalous dimensions at four loops. Finally, we also discuss in detail the computation of all necessary Wilson line integrals up to three loops using the method of leading singularities and differential equations.
We present the full analytic result for the three-loop angle-dependent cusp anomalous dimension in QCD. With this result, infrared divergences of planar scattering processes with massive particles can be predicted to that order. Moreover, we define a
In this talk we present the result for the $n_f$ dependent piece of the three-loop cusp anomalous dimension in QCD. Remarkably, it is parametrized by the same simple functions appearing in analogous anomalous dimensions in ${mathcal N}=4$ SYM at one
We review the current status of calculations of the HQET field anomalous dimension and the cusp anomalous dimension. In particular, we give the results at 4 loops for the quartic Casimir contribution, and for the full QED case, up to $varphi^6$ in th
We present the complete formula for the cusp anomalous dimension at four loops in QCD and in maximally supersymmetric Yang-Mills. In the latter theory it is given by begin{equation} {Gamma}^{rm}_{rm cusp}Big|_{alpha_s^4} = -left( frac{alpha_s N}{pi
We construct an exact analytical solution to the integral equation which is believed to describe logarithmic growth of the anomalous dimensions of high spin operators in planar N=4 super Yang-Mills theory and use it to determine the strong coupling expansion of the cusp anomalous dimension.