ﻻ يوجد ملخص باللغة العربية
We review the current status of calculations of the HQET field anomalous dimension and the cusp anomalous dimension. In particular, we give the results at 4 loops for the quartic Casimir contribution, and for the full QED case, up to $varphi^6$ in the small angle expansion. Furthermore, we discuss the leading terms in the anti-parallel lines limit at four loops.
We present the full analytic result for the three-loop angle-dependent cusp anomalous dimension in QCD. With this result, infrared divergences of planar scattering processes with massive particles can be predicted to that order. Moreover, we define a
The angle-dependent cusp anomalous dimension governs divergences coming from soft gluon exchanges between heavy particles, such as top quarks. We focus on the matter-dependent contributions and compute the first truly non-planar terms. They appear at
We present the details of the analytic calculation of the three-loop angle-dependent cusp anomalous dimension in QCD and its supersymmetric extensions, including the maximally supersymmetric $mathcal{N}=4$ super Yang-Mills theory. The three-loop resu
We present the complete formula for the cusp anomalous dimension at four loops in QCD and in maximally supersymmetric Yang-Mills. In the latter theory it is given by begin{equation} {Gamma}^{rm}_{rm cusp}Big|_{alpha_s^4} = -left( frac{alpha_s N}{pi
In this talk we present the result for the $n_f$ dependent piece of the three-loop cusp anomalous dimension in QCD. Remarkably, it is parametrized by the same simple functions appearing in analogous anomalous dimensions in ${mathcal N}=4$ SYM at one