ﻻ يوجد ملخص باللغة العربية
The Hamiltonian and Lagrangian formalisms offer two perspectives on quantum field theory. This paper sets up a framework to compare these approaches for the supersymmetric sigma model. The goal is to use techniques from physics to construct topological invariants. In brief, the Hamiltonian formalism studies positive energy representations of super annuli. This leads to a model for elliptic cohomology at the Tate curve over $mathbb{Z}$. The Lagrangian approach studies sections of line bundles over a moduli stack of super tori. This leads to a model for ordinary cohomology valued in weak modular forms over $mathbb{C}$. Compatibility between the two formalisms is a field theory version of the topological $q$-expansion principle. Combining these ingredients constructs a cohomology theory admitting an orientation for string manifolds that is closely related to Wittens Dirac operator on loop space.
We use the geometry of the space of fields for gauged supersymmetric mechanics to construct the twisted differential equivariant K-theory of a manifold with an action by a finite group.
Equivariant localization techniques give a rigorous interpretation of the Witten genus as an integral over the double loop space. This provides a geometric explanation for its modularity properties. It also reveals an interplay between the geometry o
We construct a map from $d|1$-dimensional Euclidean field theories to complexified K-theory when $d=1$ and complex analytic elliptic cohomology when $d=2$. This provides further evidence for the Stolz--Teichner program, while also identifying candida
We present a cocycle model for elliptic cohomology with complex coefficients in which methods from 2-dimensional quantum field theory can be used to rigorously construct cocycles. For example, quantizing a theory of vector bundle-valued fermions yiel
Associated to each finite dimensional linear representation of a group $G$, there is a vector bundle over the classifying space $BG$. We introduce a framework for studying this construction in the context of infinite discrete groups, taking into acco