ﻻ يوجد ملخص باللغة العربية
We construct a map from $d|1$-dimensional Euclidean field theories to complexified K-theory when $d=1$ and complex analytic elliptic cohomology when $d=2$. This provides further evidence for the Stolz--Teichner program, while also identifying candidate geometric models for Chern characters within their framework. The construction arises as a higher-dimensional and parameterized generalization of Fei Hans realization of the Chern character in K-theory as dimensional reduction for $1|1$-dimensional Euclidean field theories. In the elliptic case, the main new feature is a subtle interplay between the geometry of the super moduli space of $2|1$-dimensional tori and the derived geometry of complex analytic elliptic cohomology. As a corollary, we obtain an entirely geometric proof that partition functions of $mathcal{N}=(0,1)$ supersymmetric quantum field theories are weak modular forms, following a suggestion of Stolz and Teichner.
We present a cocycle model for elliptic cohomology with complex coefficients in which methods from 2-dimensional quantum field theory can be used to rigorously construct cocycles. For example, quantizing a theory of vector bundle-valued fermions yiel
Equivariant localization techniques give a rigorous interpretation of the Witten genus as an integral over the double loop space. This provides a geometric explanation for its modularity properties. It also reveals an interplay between the geometry o
We study super parallel transport around super loops in a quotient stack, and show that this geometry constructs a global version of the equivariant Chern character.
This note announces results on the relations between the approach of Beilinson and Drinfeld to the geometric Langlands correspondence based on conformal field theory, the approach of Kapustin and Witten based on $N=4$ SYM, and the AGT-correspondence.
We use Coulomb branch indices of Argyres-Douglas theories on $S^1 times L(k,1)$ to quantize moduli spaces ${cal M}_H$ of wild/irregular Hitchin systems. In particular, we obtain formulae for the wild Hitchin characters -- the graded dimensions of the