ﻻ يوجد ملخص باللغة العربية
Doubly-excited Rydberg states of helium (He) nanodroplets have been studied using synchrotron radiation. We observed Fano resonances related to the atomic N = 2,0 series as a function of droplet size. Although similar qualitatively to their atomic counterparts, the resonance lines are broader and exhibit a shift in energy which increases for the higher excited states. Furthermore, additional resonances are observed which are not seen in atomic systems. We discuss these features in terms of delocalized atomic states perturbed by the surrounding He atoms and compare to singly excited droplets.
We have studied complexes of gold atoms and imidazole (C$_3$N$_2$H$_4$, abbreviated Im) produced in helium nanodroplets. Following the ionization of the doped droplets we detect a broad range of different Au$_m$Im$_n^+$ complexes, however we find tha
Here, we report the observation of electron transfer mediated decay (ETMD) involving Mg clusters embedded in helium nanodroplets which is initiated by the ionization of helium followed by removal of two electrons from the Mg clusters of which one is
We report results of both Diffusion Quantum Monte Carlo(DMC) method and Reptation Quantum Monte Carlo(RMC) method on the potential energy curve of the helium dimer. We show that it is possible to obtain a highly accurate description of the helium dim
Dimers of carbon disulfide (CS$_2$) molecules embedded in helium nanodroplets are aligned using a moderately intense, 160ps, non-resonant, circularly polarized laser pulse. It is shown that the intermolecular carbon-carbon (C-C) axis aligns along the
The potential energy surface (PES) describing the interactions between $mathrm{Li_{2}(^{1}Sigma_{u}^{+})}$ and $mathrm{^{4}He}$ and an extensive study of the energies and structures of a set of small clusters, $mathrm{Li_{2}(He)_{n}}$, have been pres