ﻻ يوجد ملخص باللغة العربية
Dimers of carbon disulfide (CS$_2$) molecules embedded in helium nanodroplets are aligned using a moderately intense, 160ps, non-resonant, circularly polarized laser pulse. It is shown that the intermolecular carbon-carbon (C-C) axis aligns along the axis perpendicular to the polarization plane of the alignment laser pulse. The degree of alignment, quantified by $langle cos^2(theta_text{2D}) rangle$, is determined from the emission directions of recoiling CS$_2$$^+$ fragment ions, created when an intense 40fs probe laser pulse doubly ionizes the dimers. Here, $theta_text{2D}$ is the projection of the angle between the C-C axis on the 2D ion detector and the normal to the polarization plane. $langle cos^2(theta_text{2D}) rangle$ is measured as a function of the alignment laser intensity and the results agree well with $langle cos^2(theta_text{2D}) rangle$ calculated for gas-phase CS$_2$ dimers with a rotational temperature of 0.4K.
We demonstrate the experimental realization of impulsive alignment of carbonyl sulfide (OCS) molecules at the Low Density Matter Beamline (LDM) at the free-electron laser FERMI. OCS molecules in a molecular beam were impulsively aligned using 200 fs
Here, we report the observation of electron transfer mediated decay (ETMD) involving Mg clusters embedded in helium nanodroplets which is initiated by the ionization of helium followed by removal of two electrons from the Mg clusters of which one is
A strong inhomogeneous static electric field is used to spatially disperse a rotationally cold supersonic beam of 2,6-difluoroiodobenzene molecules according to their rotational quantum state. The molecules in the lowest lying rotational states are s
A strong inhomogeneous static electric field is used to spatially disperse a supersonic beam of polar molecules, according to their quantum state. We show that the molecules residing in the lowest-lying rotational states can be selected and used as t
We report results of both Diffusion Quantum Monte Carlo(DMC) method and Reptation Quantum Monte Carlo(RMC) method on the potential energy curve of the helium dimer. We show that it is possible to obtain a highly accurate description of the helium dim