ﻻ يوجد ملخص باللغة العربية
Spin orbit torque has been intensively investigated because of its high energy efficiency in manipulating a magnetization. Although various methods for measuring the spin orbit torque have been developed so far, the measurement results often show inconsistency among the methods, implying that an electromotive force, such as Nernst effect, irrelevant to the spin orbit torque may affect the measurement results as an artifact. In this letter, we developed a unique method to distinguish the spin orbit torque and the anomalous Nernst effect. The measurement results show that the spin orbit torque can be underestimated up to 50% under the influence of the anomalous Nernst effect.
Recently, Seebeck coefficients of ferromagnetic conductors are found to be spin-dependent. However straightforward method of accurately determining its spin polarization is still to be developed. Here, we have derived a linear dependence of anomalous
Spin-orbit torques (SOT) allow the electrical control of magnetic states. Current-induced SOT switching of the perpendicular magnetization is of particular technological importance. The SOT consists of damping-like and field-like torques so that the
Thermoelectric properties of a model Skyrmion crystal were theoretically investigated, and it was found that its large anomalous Hall conductivity, corresponding to large Chern numbers induced by its peculiar spin structure leads to a large transvers
We report a giant spin Hall effect (SHE) in {beta}-Ta that generates spin currents intense enough to induce efficient spin-transfer-torque switching of ferromagnets, thereby providing a new approach for controlling magnetic devices that can be superi
We identify and investigate thermal spin transport phenomena in sputter-deposited Pt/NiFe$_2$O$_{textrm{4-x}}$ ($4geq x geq 0$) bilayers. We separate the voltage generated by the spin Seebeck effect from the anomalous Nernst effect contributions and