ترغب بنشر مسار تعليمي؟ اضغط هنا

Large Anomalous Nernst Effect in a Skyrmion Crystal

298   0   0.0 ( 0 )
 نشر من قبل Yo Mizuta
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Thermoelectric properties of a model Skyrmion crystal were theoretically investigated, and it was found that its large anomalous Hall conductivity, corresponding to large Chern numbers induced by its peculiar spin structure leads to a large transverse thermoelectric voltage through the anomalous Nernst effect. This implies the possibility of finding good thermoelectric materials among Skyrmion systems, and thus motivates our quests for them by means of the first-principles calculations as were employed here.



قيم البحث

اقرأ أيضاً

Anomalous Nernst effect, a result of charge current driven by temperature gradient, provides a probe of the topological nature of materials due to its sensitivity to the Berry curvature near the Fermi level. Fe3GeTe2, one important member of the rece ntly discovered two-dimensional van der Waals magnetic materials, offers a unique platform for anomalous Nernst effect because of its metallic and topological nature. Here, we report the observation of large anomalous Nernst effect in Fe3GeTe2. The anomalous Hall angle and anomalous Nernst angle are about 0.07 and 0.09 respectively, far larger than those in common ferromagnets. By utilizing the Mott relation, these large angles indicate a large Berry curvature near the Fermi level, consistent with the recent proposal for Fe3GeTe2 as a topological nodal line semimetal candidate. Our work provides evidence of Fe3GeTe2 as a topological ferromagnet, and demonstrates the feasibility of using two-dimensional magnetic materials and their band topology for spin caloritronics applications.
A sizable transverse thermoelectric coefficient N , large to the extent that it potentially serves applications, is predicted to arise, by means of first-principles calculations, in a Skyrmion crystal assumed on EuO monolayer where carrier electrons are introduced upon a quantum anomalous Hall insulating phase of Chern number C = 2. This encourages future experiments to pursue such an effect.
In metallic ferromagnets, the Berry curvature of underlying quasiparticles can cause an electric voltage perpendicular to both magnetization and an applied temperature gradient, a phenomenon called the anomalous Nernst effect (ANE). Here, we report t he observation of a giant ANE in the full-Heusler ferromagnet Co$_2$MnGa, reaching $S_{yx}sim -6$ $mu$V/K at room $T$, one order of magnitude larger than the maximum value reported for a magnetic conductor. With increasing temperature, the transverse thermoelectric conductivity or Peltier coefficient $alpha_{yx}$ shows a crossover between $T$-linear and $-T log(T)$ behaviors, indicating the violation of Mott formula at high temperatures. Our numerical and analytical calculations indicate that the proximity to a quantum Lifshitz transition between type-I and type-II magnetic Weyl fermions is responsible for the observed crossover properties and an enhanced $alpha_{yx}$. The $T$ dependence of $alpha_{yx}$ in experiments and numerical calculations can be understood in terms of a quantum critical scaling function predicted by the low energy effective theory over more than a decade of temperatures. Moreover, the observation of chiral anomaly or an unsaturated positive longitudinal magnetoconductance also provide evidence for the existence of Weyl fermions in Co$_2$MnGa.
We present galvanomagnetic and thermoelectric transport measurements on signle-crystal MnBi, a rare-earth-free high-temperature permanent magnet material, along different crystallographic directions, and in particular the anomalous Nernst effect in b oth the in-plane and cross-plane directions. The cross-plane anomalous Nernst thermopower reaches 8 uV/K at 0.4 T applied field. The anomalous Hall effect also has been measured for both in-plane and cross-plane directions, with opposite signs along different orientations. We attribute this large anomalous Nernst effect to a combination of an intrinsic contribution from the Berry curvature and a new advective magnon contribution arising from magnon-electron spin-angular momentum transfer, which can be viewed as a self-spin Seebeck effect.
118 - C. Fang , C. H. Wan , Z. H. Yuan 2015
Recently, Seebeck coefficients of ferromagnetic conductors are found to be spin-dependent. However straightforward method of accurately determining its spin polarization is still to be developed. Here, we have derived a linear dependence of anomalous Nernst coefficient on anomalous Hall angle with scaling factor related to spin polarization of Seebeck coefficient, which has been experimentally verified in [Co/Pt]n superlattices. Based on the dependence, we have also evaluated spin polarization of Seebeck coefficient of some ferromagnetic conductors. Besides, we have also found a new mechanism to generate pure spin current from temperature gradient in ferromagnetic/nonmagnetic hybrid system, which could improve efficiency from thermal energy to spin current.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا