ﻻ يوجد ملخص باللغة العربية
We show that the long-time behavior of solutions to the Korteweg-de Vries shock problem can be described as a slowly modulated one-gap solution in the dispersive shock region. The modulus of the elliptic function (i.e., the spectrum of the underlying Schrodinger operator) depends only on the size of the step of the initial data and on the direction, $frac{x}{t}=const.$, along which we determine the asymptotic behavior of the solution. In turn, the phase shift (i.e., the Dirichlet spectrum) in this elliptic function depends also on the scattering data, and is computed explicitly via the Jacobi inversion problem.
We apply the method of nonlinear steepest descent to compute the long-time asymptotics of the Korteweg-de Vries equation with steplike initial data leading to a rarefaction wave. In addition to the leading asymptotic we also compute the next term in
The $n$-fold Darboux transformation $T_{n}$ of the focusing real mo-di-fied Kor-te-weg-de Vries (mKdV) equation is expressed in terms of the determinant representation. Using this representation, the $n$-soliton solutions of the mKdV equation are als
The theory of inverse scattering is developed to study the initial-value problem for the modified matrix Korteweg-de Vries (mmKdV) equation with the $2mtimes2m$ $(mgeq 1)$ Lax pairs under the nonzero boundary conditions at infinity. In the direct pro
We provide a general solution for a first order ordinary differential equation with a rational right-hand side, which arises in constructing asymptotics for large time of simultaneous solutions of the Korteweg-de Vries equation and the stationary par
In this work, we extend the Riemann-Hilbert (RH) method in order to study the coupled modified Korteweg-de Vries equation (cmKdV) under nonzero boundary conditions (NZBCs), and successfully find its solutions with their various dynamic propagation be