ﻻ يوجد ملخص باللغة العربية
We present a novel distributed algorithm for counting all four-node induced subgraphs in a big graph. These counts, called the $4$-profile, describe a graphs connectivity properties and have found several uses ranging from bioinformatics to spam detection. We also study the more complicated problem of estimating the local $4$-profiles centered at each vertex of the graph. The local $4$-profile embeds every vertex in an $11$-dimensional space that characterizes the local geometry of its neighborhood: vertices that connect different clusters will have different local $4$-profiles compared to those that are only part of one dense cluster. Our algorithm is a local, distributed message-passing scheme on the graph and computes all the local $4$-profiles in parallel. We rely on two novel theoretical contributions: we show that local $4$-profiles can be calculated using compressed two-hop information and also establish novel concentration results that show that graphs can be substantially sparsified and still retain good approximation quality for the global $4$-profile. We empirically evaluate our algorithm using a distributed GraphLab implementation that we scaled up to $640$ cores. We show that our algorithm can compute global and local $4$-profiles of graphs with millions of edges in a few minutes, significantly improving upon the previous state of the art.
We study the problem of approximating the $3$-profile of a large graph. $3$-profiles are generalizations of triangle counts that specify the number of times a small graph appears as an induced subgraph of a large graph. Our algorithm uses the novel c
Betweenness centrality is a graph parameter that has been successfully applied to network analysis. In the context of computer networks, it was considered for various objectives, ranging from routing to service placement. However, as observed by Macc
In this paper we present a deterministic CONGEST algorithm to compute an $O(kDelta)$-vertex coloring in $O(Delta/k)+log^* n$ rounds, where $Delta$ is the maximum degree of the network graph and $1leq kleq O(Delta)$ can be freely chosen. The algorithm
We investigate the behavior of a simple majority dynamics on networks of agents whose interaction topology exhibits a community structure. By leveraging recent advancements in the analysis of dynamics, we prove that, when the states of the nodes are
By introducing programmability, automated verification, and innovative debugging tools, Software-Defined Networks (SDNs) are poised to meet the increasingly stringent dependability requirements of todays communication networks. However, the design of