ﻻ يوجد ملخص باللغة العربية
In this paper we present a deterministic CONGEST algorithm to compute an $O(kDelta)$-vertex coloring in $O(Delta/k)+log^* n$ rounds, where $Delta$ is the maximum degree of the network graph and $1leq kleq O(Delta)$ can be freely chosen. The algorithm is extremely simple: Each node locally computes a sequence of colors and then it tries colors from the sequence in batches of size $k$. Our algorithm subsumes many important results in the history of distributed graph coloring as special cases, including Linials color reduction [Linial, FOCS87], the celebrated locally iterative algorithm from [Barenboim, Elkin, Goldenberg, PODC18], and various algorithms to compute defective and arbdefective colorings. Our algorithm can smoothly scale between these and also simplifies the state of the art $(Delta+1)$-coloring algorithm. At the cost of losing the full algorithms simplicity we also provide a $O(kDelta)$-coloring algorithm in $O(sqrt{Delta/k})+log^* n$ rounds. We also provide improved deterministic algorithms for ruling sets, and, additionally, we provide a tight characterization for one-round color reduction algorithms.
We present a randomized distributed algorithm that computes a $Delta$-coloring in any non-complete graph with maximum degree $Delta geq 4$ in $O(log Delta) + 2^{O(sqrt{loglog n})}$ rounds, as well as a randomized algorithm that computes a $Delta$-col
Distributed vertex coloring is one of the classic problems and probably also the most widely studied problems in the area of distributed graph algorithms. We present a new randomized distributed vertex coloring algorithm for the standard CONGEST mode
We present a simple deterministic distributed algorithm that computes a $(Delta+1)$-vertex coloring in $O(log^2 Delta cdot log n)$ rounds. The algorithm can be implemented with $O(log n)$-bit messages. The algorithm can also be extended to the more g
In this paper we study the number of vertex recolorings that an algorithm needs to perform in order to maintain a proper coloring of a graph under insertion and deletion of vertices and edges. We present two algorithms that achieve different trade-of
Linials famous color reduction algorithm reduces a given $m$-coloring of a graph with maximum degree $Delta$ to a $O(Delta^2log m)$-coloring, in a single round in the LOCAL model. We show a similar result when nodes are restricted to choose their col