ﻻ يوجد ملخص باللغة العربية
[Background] The proton charge radius extracted from recent muonic hydrogen Lamb shift measurements is significantly smaller than that extracted from atomic hydrogen and electron scattering measurements. [Purpose] In an attempt to understand the discrepancy, we review high-precision electron scattering results from Mainz, Jefferson Lab, Saskatoon and Stanford. [Method] We make use of stepwise regression techniques using the $F$-test as well as the Akaike information criterion to systematically determine the predictive variables to use for a given set and range of electron scattering data as well as to provide multivariate error estimates. [Results] Starting with the precision, low four-momentum transfer ($Q^2$) data from Mainz (1980) and Saskatoon (1974), we find that a stepwise regression of the Maclaurin series using the $F$-test as well as the Akaike information criterion justify using a linear extrapolation which yields a value for the proton radius that is consistent with the result obtained from muonic hydrogen measurements. Applying the same Maclaurin series and statistical criteria to the 2014 Rosenbluth results on $G_E$ from Mainz, we again find that the stepwise regression tends to favor a radius consistent with the muonic hydrogen radius but produces results that are extremely sensitive to the range of data included in the fit. Making use of the high-$Q^2$ data on $G_E$ to select functions which extrapolate to high $Q^2$, we find that a Pade ($N=M=1$) statistical model works remarkably well, as does a dipole function with a 0.84 fm radius, $G_E(Q^2) = ( 1 + Q^2/0.66,mathrm{GeV}^2)^{-2}$. [Conclusions] From this statistical analysis, we conclude that the electron scattering result and the muonic hydrogen result are consistent. It is the atomic hydrogen results that are the outliers.
Extracting the proton charge radius from electron scattering data requires determining the slope of the charge form factor at $Q^2$ of zero. But as experimental data never reach that limit, numerous methods for making the extraction have been propose
It is suggested that proton elastic scattering on atomic electrons allows a precise measurement of the proton charge radius. Very small values of transferred momenta (up to four order of magnitude smaller than the ones presently available) can be reached with high probability.
To extract the charge radius of the proton, $r_{p}$, from the electron scattering data, the PRad collaboration at Jefferson Lab has developed a rigorous framework for finding the best functional forms - the fitters - for a robust extraction of $r_{p}
In two recent papers it is argued that the proton radius puzzle can be explained by truncating the electron scattering data to low momentum transfer and fit the rms radius in the low momentum expansion of the form factor. It is shown that this proced
We extract the proton magnetic radius from the high-precision electron-proton elastic scattering cross section data. Our theoretical framework combines dispersion analysis and chiral effective field theory and implements the dynamics governing the sh