ترغب بنشر مسار تعليمي؟ اضغط هنا

Late time multi wavelength observations of Swift J1644+5734: A luminous optical/IR bump and quiescent X-ray emission

118   0   0.0 ( 0 )
 نشر من قبل Andrew Levan
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present late-time multi-wavelength observations of Swift J1644+57, suggested to be a relativistic tidal disruption flare (TDF). Our observations extend to >4 years from discovery, and show that 1.4 years after outburst the relativistic jet switched-off on a timescale less than tens of days, corresponding to a power-law decay faster than $t^{-70}$. Beyond this point weak X-rays continue to be detected at an approximately constant luminosity of $L_X sim 5 times 10^{42}$ erg s$^{-1}$, and are marginally inconsistent with a continuing decay of $t^{-5/3}$, similar to that seen prior to the switch-off. Host photometry enables us to infer a black hole mass of $M_{BH}=3 times 10^6$ M$_{odot}$, consistent with the late time X-ray luminosity arising from sub-Eddington accretion onto the black hole in the form of either an unusually optically faint AGN or a slowly varying phase of the transient. Optical/IR observations show a clear bump in the light curve at timescales of 30-50 days, with a peak magnitude (corrected for host galaxy extinction) of $M_R sim -22-23$. The luminosity of the bump is significantly higher than seen in other, non-relativistic TDFs and does not match any re-brightening seen at X-ray or radio wavelengths. Its luminosity, light curve shape and spectrum are broadly similar to those seen in superluminous SNe, although subject to large uncertainties in the correction of the significant host extinction. We discuss these observations in the context of both TDF and massive star origins for Swift J1644+5734 and other candidate relativistic tidal flares.



قيم البحث

اقرأ أيضاً

76 - Z. Paragi , J. Yang , S. Komossa 2017
A small fraction of Tidal Disruption Events (TDE) produce relativistic jets, evidenced by their non-thermal X-ray spectra and transient radio emission. Here we present milliarcsecond-resolution imaging results on TDE J1644+5734 with the European VLBI Network (EVN). These provide a strong astrometric constraint on the average apparent jet velocity <0.27, that constrains the intrinsic jet velocity for a given viewing angle.
165 - Y. C. Zou 2013
The X-ray emission from Swift J1644+57 is not steadily decreasing instead it shows multiple pulses with declining amplitudes. We model the pulses as reverse shocks from collisions between the late ejected shells and the externally shocked material, w hich is decelerated while sweeping the ambient medium. The peak of each pulse is taken as the maximum emission of each reverse shock. With a proper set of parameters, the envelope of peaks in the light curve as well as the spectrum can be modelled nicely.
116 - F. Onori , M. Fiocchi , N. Masetti 2021
In recent years, thanks to the continuous surveys performed by INTEGRAL and Swift satellites, our knowledge of the hard X-ray/soft gamma-ray sky has greatly improved. As a result it is now populated with about 2000 sources, both Galactic and extra-ga lactic, mainly discovered by IBIS and BAT instruments. Many different follow-up campaigns have been successfully performed by using a multi-wavelength approach, shedding light on the nature of a number of these new hard X-ray sources. However, a fraction are still of a unidentified nature. This is mainly due to the lack of lower energy observations, which usually deliver a better constrained position for the sources, and the unavailability of the key observational properties, needed to obtain a proper physical characterization. Here we report on the classification of two poorly studied Galactic X-ray transients IGR J20155+3827 and Swift J1713.4-4219, for which the combination of new and/or archival X-ray and Optical/NIR observations have allowed us to pinpoint their nature. In particular, thanks to XMMNewton archival data together with new optical spectroscopic and archival Optical/NIR photometric observations, we have been able to classify IGR J20155+3827 as a distant HMXB. The new INTEGRAL and Swift data collected during the 2019 X-ray outburst of Swift J1713.4-4219, in combination with the archival optical/NIR observations, suggest a LMXB classification for this source.
Light scattering at near-infrared wavelengths has been used to study the optical properties of the interstellar dust grains, but these studies are limited by the assumptions on the strength of the radiation field. On the other hand, thermal dust emis sion can be used to constrain the properties of the radiation field, although this is hampered by uncertainty about the dust emissivity. We test if current dust models allow us to model a molecular cloud simultaneously in the near infrared (NIR) and far infrared (FIR) wavelengths and compare the results with observations. Our aim is to place constraints on the properties of the dust grains and the strength of the radiation field. We present computations of dust emission and scattered light of a quiescent molecular cloud LDN1512. We construct radiative transfer models for LDN1512 that include an anisotropic radiation field and a three-dimensional cloud model. We are able to reproduce the observed FIR observations, with a radiation field derived from the DIRBE observations, with all of the tested dust models. However, with the same density distribution and the assumed radiation field, the models fail to reproduce the observed NIR scattering in all cases except for models that take into account dust evolution via coagulation and mantle formation. We find that the column densities derived from our radiative transfer modelling can differ by a factor of up to two, compared to the column densities derived from the observations with modified blackbody fits. The discrepancy in the column densities is likely caused because of temperature difference between a modified blackbody fit and the real spectra. We show that the observed dust emission can be reproduced with several different assumptions about the properties of the dust grains. However, in order to reproduce the observed scattered surface brightness dust evolution must be taken into account.
Aims: We have analyzed low frequency radio data of tidal disruption event (TDE) Swift J1644+57 to search for a counterpart. We consider how brief transient signals (on the order of seconds or minutes) originating from this location would appear in ou r data. We also consider how automatic radio frequency interference (RFI) flagging at radio telescope observatories might affect these and other transient observations in the future, particularly with brief transients of a few seconds duration. Methods: We observed the field in the low-frequency regime at 149 MHz with data obtained over several months with the Low Frequency Array (LOFAR). We also present simulations where a brief transient is injected into the data in order to see how it would appear in our measurement sets, and how it would be affected by RFI flagging. Finally, both based on simulation work and the weighted average of the observed background over the course of the individual observations, we present the possibility of brief radio transients in the data. Results: Our observations of Swift J1644+57 yielded no detection of the source and a peak flux density at this position of 24.7 $pm$ 8.9 mJy. Our upper limit on the transient rate of the snapshot surface density in this field at sensitivities < 0.5 Jy is $rho < 2.2 times10^{-2}$ deg$^{-2}$. We also conclude that we did not observe any brief transient signals originating specifically from the Swift J1644+57 source itself, and searches for such transients are severely limited by automatic RFI flagging algorithms which flag transients of less than 2 minutes duration. As such, careful consideration of RFI flagging techniques must occur when searching for transient signals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا