ﻻ يوجد ملخص باللغة العربية
We present late-time multi-wavelength observations of Swift J1644+57, suggested to be a relativistic tidal disruption flare (TDF). Our observations extend to >4 years from discovery, and show that 1.4 years after outburst the relativistic jet switched-off on a timescale less than tens of days, corresponding to a power-law decay faster than $t^{-70}$. Beyond this point weak X-rays continue to be detected at an approximately constant luminosity of $L_X sim 5 times 10^{42}$ erg s$^{-1}$, and are marginally inconsistent with a continuing decay of $t^{-5/3}$, similar to that seen prior to the switch-off. Host photometry enables us to infer a black hole mass of $M_{BH}=3 times 10^6$ M$_{odot}$, consistent with the late time X-ray luminosity arising from sub-Eddington accretion onto the black hole in the form of either an unusually optically faint AGN or a slowly varying phase of the transient. Optical/IR observations show a clear bump in the light curve at timescales of 30-50 days, with a peak magnitude (corrected for host galaxy extinction) of $M_R sim -22-23$. The luminosity of the bump is significantly higher than seen in other, non-relativistic TDFs and does not match any re-brightening seen at X-ray or radio wavelengths. Its luminosity, light curve shape and spectrum are broadly similar to those seen in superluminous SNe, although subject to large uncertainties in the correction of the significant host extinction. We discuss these observations in the context of both TDF and massive star origins for Swift J1644+5734 and other candidate relativistic tidal flares.
A small fraction of Tidal Disruption Events (TDE) produce relativistic jets, evidenced by their non-thermal X-ray spectra and transient radio emission. Here we present milliarcsecond-resolution imaging results on TDE J1644+5734 with the European VLBI
The X-ray emission from Swift J1644+57 is not steadily decreasing instead it shows multiple pulses with declining amplitudes. We model the pulses as reverse shocks from collisions between the late ejected shells and the externally shocked material, w
In recent years, thanks to the continuous surveys performed by INTEGRAL and Swift satellites, our knowledge of the hard X-ray/soft gamma-ray sky has greatly improved. As a result it is now populated with about 2000 sources, both Galactic and extra-ga
Light scattering at near-infrared wavelengths has been used to study the optical properties of the interstellar dust grains, but these studies are limited by the assumptions on the strength of the radiation field. On the other hand, thermal dust emis
Aims: We have analyzed low frequency radio data of tidal disruption event (TDE) Swift J1644+57 to search for a counterpart. We consider how brief transient signals (on the order of seconds or minutes) originating from this location would appear in ou