ﻻ يوجد ملخص باللغة العربية
Aims: We have analyzed low frequency radio data of tidal disruption event (TDE) Swift J1644+57 to search for a counterpart. We consider how brief transient signals (on the order of seconds or minutes) originating from this location would appear in our data. We also consider how automatic radio frequency interference (RFI) flagging at radio telescope observatories might affect these and other transient observations in the future, particularly with brief transients of a few seconds duration. Methods: We observed the field in the low-frequency regime at 149 MHz with data obtained over several months with the Low Frequency Array (LOFAR). We also present simulations where a brief transient is injected into the data in order to see how it would appear in our measurement sets, and how it would be affected by RFI flagging. Finally, both based on simulation work and the weighted average of the observed background over the course of the individual observations, we present the possibility of brief radio transients in the data. Results: Our observations of Swift J1644+57 yielded no detection of the source and a peak flux density at this position of 24.7 $pm$ 8.9 mJy. Our upper limit on the transient rate of the snapshot surface density in this field at sensitivities < 0.5 Jy is $rho < 2.2 times10^{-2}$ deg$^{-2}$. We also conclude that we did not observe any brief transient signals originating specifically from the Swift J1644+57 source itself, and searches for such transients are severely limited by automatic RFI flagging algorithms which flag transients of less than 2 minutes duration. As such, careful consideration of RFI flagging techniques must occur when searching for transient signals.
With their wide fields of view and often relatively long coverage of any position in the sky in imaging survey mode, modern radio telescopes provide a data stream that is naturally suited to searching for rare transients. However, Radio Frequency Int
The X-ray emission from Swift J1644+57 is not steadily decreasing instead it shows multiple pulses with declining amplitudes. We model the pulses as reverse shocks from collisions between the late ejected shells and the externally shocked material, w
An estimate of the jet inclination angle relative to the accreting black holes spin can be useful to probe the jet triggering mechanism and the disc--jet coupling. A Tidal Disruption Event (TDE) of a star by a supermassive spinning black hole provide
Reflections from objects in Earth orbit can produce sub-second, star-like optical flashes similar to astrophysical transients. Reflections have historically caused false alarms for transient surveys, but the population has not been systematically stu
The tidal disruption event by a supermassive black hole in Swift J1644+57 can trigger limit-cycle oscillations between a supercritically accreting X-ray bright state and a subcritically accreting X-ray dim state. Time evolution of the debris gas arou