ترغب بنشر مسار تعليمي؟ اضغط هنا

ColDICE: a parallel Vlasov-Poisson solver using moving adaptive simplicial tessellation

65   0   0.0 ( 0 )
 نشر من قبل Thierry Sousbie
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Resolving numerically Vlasov-Poisson equations for initially cold systems can be reduced to following the evolution of a three-dimensional sheet evolving in six-dimensional phase-space. We describe a public parallel numerical algorithm consisting in representing the phase-space sheet with a conforming, self-adaptive simplicial tessellation of which the vertices follow the Lagrangian equations of motion. The algorithm is implemented both in six- and four-dimensional phase-space. Refinement of the tessellation mesh is performed using the bisection method and a local representation of the phase-space sheet at second order relying on additional tracers created when needed at runtime. In order to preserve in the best way the Hamiltonian nature of the system, refinement is anisotropic and constrained by measurements of local Poincare invariants. Resolution of Poisson equation is performed using the fast Fourier method on a regular rectangular grid, similarly to particle in cells codes. To compute the density projected onto this grid, the intersection of the tessellation and the grid is calculated using the method of Franklin and Kankanhalli (1993) generalised to linear order. As preliminary tests of the code, we study in four dimensional phase-space the evolution of an initially small patch in a chaotic potential and the cosmological collapse of a fluctuation composed of two sinusoidal waves. We also perform a warm dark matter simulation in six-dimensional phase-space that we use to check the parallel scaling of the code.



قيم البحث

اقرأ أيضاً

114 - S. Colombi , C. Alard 2017
We propose a new semi-Lagrangian Vlasov-Poisson solver. It employs elements of metric to follow locally the flow and its deformation, allowing one to find quickly and accurately the initial phase-space position $Q(P)$ of any test particle $P$, by exp anding at second order the geometry of the motion in the vicinity of the closest element. It is thus possible to reconstruct accurately the phase-space distribution function at any time $t$ and position $P$ by proper interpolation of initial conditions, following Liouville theorem. When distorsion of the elements of metric becomes too large, it is necessary to create new initial conditions along with isotropic elements and repeat the procedure again until next resampling. To speed up the process, interpolation of the phase-space distribution is performed at second order during the transport phase, while third order splines are used at the moments of remapping. We also show how to compute accurately the region of influence of each element of metric with the proper percolation scheme. The algorithm is tested here in the framework of one-dimensional gravitational dynamics but is implemented in such a way that it can be extended easily to four or six-dimensional phase-space. It can also be trivially generalised to plasmas.
We present a new open source code for massive parallel computation of Voronoi tessellations(VT hereafter) in large data sets. The code is focused for astrophysical purposes where VT densities and neighbors are widely used. There are several serial Vo ronoi tessellation codes, however no open source and parallel implementations are available to handle the large number of particles/galaxies in current N-body simulations and sky surveys. Parallelization is implemented under MPI and VT using Qhull library. Domain decomposition takes into account consistent boundary computation between tasks, and includes periodic conditions. In addition, the code computes neighbors list, Voronoi density, Voronoi cell volume, density gradient for each particle, and densities on a regular grid.
We revisit in one dimension the waterbag method to solve numerically Vlasov-Poisson equations. In this approach, the phase-space distribution function $f(x,v)$ is initially sampled by an ensemble of patches, the waterbags, where $f$ is assumed to be constant. As a consequence of Liouville theorem it is only needed to follow the evolution of the border of these waterbags, which can be done by employing an orientated, self-adaptive polygon tracing isocontours of $f$. This method, which is entropy conserving in essence, is very accurate and can trace very well non linear instabilities as illustrated by specific examples. As an application of the method, we generate an ensemble of single waterbag simulations with decreasing thickness, to perform a convergence study to the cold case. Our measurements show that the system relaxes to a steady state where the gravitational potential profile is a power-law of slowly varying index $beta$, with $beta$ close to $3/2$ as found in the literature. However, detailed analysis of the properties of the gravitational potential shows that at the center, $beta > 1.54$. Moreover, our measurements are consistent with the value $beta=8/5=1.6$ that can be analytically derived by assuming that the average of the phase-space density per energy level obtained at crossing times is conserved during the mixing phase. These results are incompatible with the logarithmic slope of the projected density profile $beta-2 simeq -0.47$ obtained recently by Schulz et al. (2013) using a $N$-body technique. This sheds again strong doubts on the capability of $N$-body techniques to converge to the correct steady state expected in the continuous limit.
We present a new method for evolving the equations of magnetohydrodynamics (both Newtonian and relativistic) that is capable of maintaining a divergence-free magnetic field ($ abla cdot mathbf{B} = 0$) on adaptively refined, conformally moving meshes . The method relies on evolving the magnetic vector potential and then using it to reconstruct the magnetic fields. The advantage of this approach is that the vector potential is not subject to a constraint equation in the same way the magnetic field is, and so can be refined and moved in a straightforward way. We test this new method against a wide array of problems from simple Alfven waves on a uniform grid to general relativistic MHD simulations of black hole accretion on a nested, spherical-polar grid. We find that the code produces accurate results and in all cases maintains a divergence-free magnetic field to machine precision.
115 - P. M. Ricker 2007
We describe a finite-volume method for solving the Poisson equation on oct-tree adaptive meshes using direct solvers for individual mesh blocks. The method is a modified version of the method presented by Huang and Greengard (2000), which works with finite-difference meshes and does not allow for shared boundaries between refined patches. Our algorithm is implemented within the FLASH code framework and makes use of the PARAMESH library, permitting efficient use of parallel computers. We describe the algorithm and present test results that demonstrate its accuracy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا