ﻻ يوجد ملخص باللغة العربية
We study numerically the phase-ordering kinetics of the site-diluted and bond-diluted Ising models after a quench from an infinite to a low temperature. We show that the speed of growth of the ordered domains size is non-monotonous with respect to the amount of dilution $D$: Starting from the pure case $D=0$ the system slows down when dilution is added, as it is usually expected when disorder is introduced, but only up to a certain value $D^*$ beyond which the speed of growth raises again. We interpret this counterintuitive fact in a renormalization-group inspired framework, along the same lines proposed for the corresponding two-dimensional systems, where a similar pattern was observed.
We study numerically the coarsening dynamics of the Ising model on a regular lattice with random bonds and on deterministic fractal substrates. We propose a unifying interpretation of the phase-ordering processes based on two classes of dynamical beh
We study numerically the phase-ordering kinetics following a temperature quench of the Ising model with single spin flip dynamics on a class of graphs, including geometrical fractals and random fractals, such as the percolation cluster. For each stru
The effects of quenched disorder on nonequilibrium phase transitions in the directed percolation universality class are revisited. Using a strong-disorder energy-space renormalization group, it is shown that for any amount of disorder the critical be
In a growing number of strongly disordered and dense systems, the dynamics of a particle pulled by an external force field exhibits super-diffusion. In the context of glass forming systems, super cooled glasses and contamination spreading in porous m
We consider two models with disorder dominated critical points and study the distribution of clusters which are confined in strips and touch one or both boundaries. For the classical random bond Potts model in the large-q limit we study optimal Fortu