ﻻ يوجد ملخص باللغة العربية
The NASA Kepler mission has revolutionised time-domain astronomy and has massively expanded the number of known extrasolar planets. However, the effect of wide multiplicity on exoplanet occurrence has not been tested with this dataset. We present a sample of 401 wide multiple systems containing at least one Kepler target star. Our method uses Pan-STARRS1 and archival data to produce an accurate proper motion catalogue of the Kepler field. Combined with Pan-STARRS1 SED fits and archival proper motions for bright stars, we use a newly developed probabilistic algorithm to identify likely wide binary pairs which are not chance associations. As by-products of this we present stellar SED templates in the Pan-STARRS1 photometric system and
Pan-STARRS1 has carried out a set of distinct synoptic imaging sky surveys including the $3pi$ Steradian Survey and the Medium Deep Survey in 5 bands ($grizy_{P1}$). The mean 5$sigma$ point source limiting sensitivities in the stacked 3$pi$ Steradian
We confirm and characterize the exoplanetary systems Kepler-445 and Kepler-446: two mid-M dwarf stars, each with multiple, small, short-period transiting planets. Kepler-445 is a metal-rich ([Fe/H]=+0.25 $pm$ 0.10) M4 dwarf with three transiting plan
We present the discovery of 61 wide (>5 arcsecond) separation, low-mass (stellar and substellar) companions to stars in the solar neighborhood identified from Pan-STARRS,1 (PS1) data and the spectral classification of 27 previously known companions.
We discuss the discovery and characterization of the circumbinary planet Kepler-38b. The stellar binary is single-lined, with a period of 18.8 days, and consists of a moderately evolved main-sequence star (M_A = 0.949 +/- 0.059 solar masses and R_A =
Chemical abundance studies of the Sun and solar twins have demonstrated that the solar composition of refractory elements is depleted when compared to volatile elements, which could be due to the formation of terrestrial planets. In order to further