ﻻ يوجد ملخص باللغة العربية
We report a lattice calculation of nucleon forward matrix elements on a $48^3 times 96$ lattice at the physical pion mass and a spatial size of 5.5 fm. The $2+1$ flavor dynamical fermion configurations are generated with domain-wall fermions (DWF) and the overlap fermions are adopted for the valence quarks. The isovector $g_A^3$ and $g_S^3$, and the connected insertion part of $g_S^0$ are reported for three source-sink separations. With local current, we obtain $g_A^3 = 1.18(4)$ from a two-state fit. For the quark momentum fraction $langle x rangle_{u-d}$, we have included smaller lattices (i.e. $24^3 times 64$ and $32^3 times 64$ lattice with pion mass at 330 and 290 MeV respectively) for a fit which includes partially quenched cases as well as finite volume and continuum corrections. A global fit with perturbative renormalization gives $langle x rangle_{u-d} (overline{MS},, mu = 2, {rm GeV}) = 0.170(14)$. We made a cost comparison of calculating the nucleon matrix elements with those from the twisted mass fermion on similar sized lattice at the physical pion point and the domain-wall fermion calculation on the same DWF lattice. We also compare cost with the clover fermion calculation on similar sized lattice at about the same quark mass. The comparison shows that with several improvements, such as many-to-all correlator with grid source and low-mode substitution in the connected insertion and low-mode average in the quark loop can make the overlap as efficient as the twisted-mass and clover fermions in calculating the three-point functions. It is more efficient than the DWF. When the multi-mass feature is invoked, the overlap can be more efficient in reaching the same precision than the single mass comparison made so far.
We present results on the nucleon scalar, axial and tensor charges as well as on the momentum fraction, and the helicity and transversity moments. The pion momentum fraction is also presented. The computation of these key observables is carried out u
We report a state-of-the-art lattice calculation of the isovector quark transversity distribution of the proton at the physical pion mass. Within the framework of large-momentum effective theory (LaMET), we compute the transversity quasi-distribution
We report on lattice QCD calculations of the nucleon isovector axial, scalar, and tensor charges. Our calculations are performed on two 2+1-flavor ensembles generated using a 2-HEX-smeared Wilson-clover action at the physical pion mass and lattice sp
Current status of nucleon structure calculations with joint RBC and UKQCD 2+1-flavor dynamical domain-wall fermions (DWF) lattice QCD is reported: Two ensembles with pion mass of about (m_pi=170) MeV and 250 MeV are used. The lattice cutoff is set at
We report the first Lattice QCD calculation using the almost physical pion mass mpi=149 MeV that agrees with experiment for four fundamental isovector observables characterizing the gross structure of the nucleon: the Dirac and Pauli radii, the magne