ﻻ يوجد ملخص باللغة العربية
Depositing Au on a graphene derivate, which involves substituting four C atoms with three N atoms in a $3times 3$ cell graphene, we realized a topological insulator of the Kane-Mele model with a gap of 50~meV surrounding the Dirac point of graphene. In this material, we observed an anomalous band inversion (BI) protected by the symmetry with character $e$ of group C$_{rm 3V}$. The symmetry constrains two $e$ bands with mirror-symmetry combination (MSC) and mirror-antisymmetry combination (MAC) of Au and N orbitals degenerate at $Gamma$, whereas the interaction of $pi^*$ of graphene on the $e$-MAC band tends to lift this degenerate, resulting in that the $pi^*$ and $e$-MAC band exchange their orbital components near $Gamma$, causing thus a discontinued BI.
We study surface states of topological crystalline insulators and superconductors protected by inversion symmetry. These fall into the category of higher-order topological insulators and superconductors which possess surface states that propagate alo
The entanglement Chern number, the Chern number for the entanglement Hamiltonian, is used to charac- terize the Kane-Mele model, which is a typical model of the quantum spin Hall phase with the time reversal symmetry. We first obtain the global phase
We investigate the edge state of a two-dimensional topological insulator based on the Kane-Mele model. Using complex wave numbers of the Bloch wave function, we derive an analytical expression for the edge state localized near the edge of a semi-infi
We investigate the magnetic response in the quantum spin Hall phase of the layered Kane-Mele model with Hubbard interaction, and argue a condition to obtain the Meissner effect. The effect of Rashba spin orbit coupling is also discussed.
We study free, capped and encapsulated bilayer jacutingaite Pt$_2$HgSe$_3$ from first principles. While the free standing bilayer is a large gap trivial insulator, we find that the encapsulated structure has a small trivial gap due to the competition