ترغب بنشر مسار تعليمي؟ اضغط هنا

Stochastic differential games with inside information

104   0   0.0 ( 0 )
 نشر من قبل Bernt {\\O}ksendal
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study stochastic differential games of jump diffusions, where the players have access to inside information. Our approach is based on anticipative stochastic calculus, white noise, Hida-Malliavin calculus, forward integrals and the Donsker delta functional. We obtain a characterization of Nash equilibria of such games in terms of the corresponding Hamiltonians. This is used to study applications to insider games in finance, specifically optimal insider consumption and optimal insider portfolio under model uncertainty.



قيم البحث

اقرأ أيضاً

This paper is concerned with a Stackelberg stochastic differential game on a finite horizon in feedback information pattern. A system of parabolic partial differential equations is obtained at the level of Hamiltonian to give the verification theorem of the feedback Stackelberg equilibrium. As an example, a linear quadratic Stackelberg stochastic differential game is investigated. Riccati equations are introduced to express the feedback Stackelberg equilibrium, analytical and numerical solutions to these Riccati equations are discussed in some special cases.
351 - Rainer Buckdahn 2014
We investigate a two-player zero-sum differential game with asymmetric information on the payoff and without Isaacs condition. The dynamics is an ordinary differential equation parametrised by two controls chosen by the players. Each player has a pri vate information on the payoff of the game, while his opponent knows only the probability distribution on the information of the other player. We show that a suitable definition of random strategies allows to prove the existence of a value in mixed strategies. Moreover, the value function can be characterised in term of the unique viscosity solution in some dual sense of a Hamilton-Jacobi-Isaacs equation. Here we do not suppose the Isaacs condition which is usually assumed in differential games.
251 - Jingrui Sun 2020
The paper studies the open-loop saddle point and the open-loop lower and upper values, as well as their relationship for two-person zero-sum stochastic linear-quadratic (LQ, for short) differential games with deterministic coefficients. It derives a necessary condition for the finiteness of the open-loop lower and upper values and a sufficient condition for the existence of an open-loop saddle point. It turns out that under the sufficient condition, a strongly regular solution to the associated Riccati equation uniquely exists, in terms of which a closed-loop representation is further established for the open-loop saddle point. Examples are presented to show that the finiteness of the open-loop lower and upper values does not ensure the existence of an open-loop saddle point in general. But for the classical deterministic LQ game, these two issues are equivalent and both imply the solvability of the Riccati equation, for which an explicit representation of the solution is obtained.
Stochastic differential games have been used extensively to model agents competitions in Finance, for instance, in P2P lending platforms from the Fintech industry, the banking system for systemic risk, and insurance markets. The recently proposed mac hine learning algorithm, deep fictitious play, provides a novel efficient tool for finding Markovian Nash equilibrium of large $N$-player asymmetric stochastic differential games [J. Han and R. Hu, Mathematical and Scientific Machine Learning Conference, pages 221-245, PMLR, 2020]. By incorporating the idea of fictitious play, the algorithm decouples the game into $N$ sub-optimization problems, and identifies each players optimal strategy with the deep backward stochastic differential equation (BSDE) method parallelly and repeatedly. In this paper, we prove the convergence of deep fictitious play (DFP) to the true Nash equilibrium. We can also show that the strategy based on DFP forms an $eps$-Nash equilibrium. We generalize the algorithm by proposing a new approach to decouple the games, and present numerical results of large population games showing the empirical convergence of the algorithm beyond the technical assumptions in the theorems.
We study a stochastic game where one player tries to find a strategy such that the state process reaches a target of controlled-loss-type, no matter which action is chosen by the other player. We provide, in a general setup, a relaxed geometric dynam ic programming principle for this problem and derive, for the case of a controlled SDE, the corresponding dynamic programming equation in the sense of viscosity solutions. As an example, we consider a problem of partial hedging under Knightian uncertainty.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا