ترغب بنشر مسار تعليمي؟ اضغط هنا

Convergence of Deep Fictitious Play for Stochastic Differential Games

136   0   0.0 ( 0 )
 نشر من قبل Ruimeng Hu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Stochastic differential games have been used extensively to model agents competitions in Finance, for instance, in P2P lending platforms from the Fintech industry, the banking system for systemic risk, and insurance markets. The recently proposed machine learning algorithm, deep fictitious play, provides a novel efficient tool for finding Markovian Nash equilibrium of large $N$-player asymmetric stochastic differential games [J. Han and R. Hu, Mathematical and Scientific Machine Learning Conference, pages 221-245, PMLR, 2020]. By incorporating the idea of fictitious play, the algorithm decouples the game into $N$ sub-optimization problems, and identifies each players optimal strategy with the deep backward stochastic differential equation (BSDE) method parallelly and repeatedly. In this paper, we prove the convergence of deep fictitious play (DFP) to the true Nash equilibrium. We can also show that the strategy based on DFP forms an $eps$-Nash equilibrium. We generalize the algorithm by proposing a new approach to decouple the games, and present numerical results of large population games showing the empirical convergence of the algorithm beyond the technical assumptions in the theorems.



قيم البحث

اقرأ أيضاً

183 - B. Swenson , S. Kar , 2015
The paper is concerned with distributed learning and optimization in large-scale settings. The well-known Fictitious Play (FP) algorithm has been shown to achieve Nash equilibrium learning in certain classes of multi-agent games. However, FP can be c omputationally difficult to implement when the number of players is large. Sampled FP is a variant of FP that mitigates the computational difficulties arising in FP by using a Monte-Carlo (i.e., sampling-based) approach. The Sampled FP algorithm has been studied both as a tool for distributed learning and as an optimization heuristic for large-scale problems. Despite its computational advantages, a shortcoming of Sampled FP is that the number of samples that must be drawn in each round of the algorithm grows without bound (on the order of $sqrt{t}$, where $t$ is the round of the repeated play). In this paper we propose Computationally Efficient Sampled FP (CESFP)---a variant of Sampled FP in which only one sample need be drawn each round of the algorithm (a substantial reduction from $O(sqrt{t})$ samples per round, as required in Sampled FP). CESFP operates using a stochastic-approximation type rule to estimate the expected utility from round to round. It is proven that the CESFP algorithm achieves Nash equilibrium learning in the same sense as classical FP and Sampled FP. Simulation results suggest that the convergence rate of CESFP (in terms of repeated-play iterations) is similar to that of Sampled FP.
138 - Brian Swenson , Soummya Kar , 2013
The paper is concerned with distributed learning in large-scale games. The well-known fictitious play (FP) algorithm is addressed, which, despite theoretical convergence results, might be impractical to implement in large-scale settings due to intens e computation and communication requirements. An adaptation of the FP algorithm, designated as the empirical centroid fictitious play (ECFP), is presented. In ECFP players respond to the centroid of all players actions rather than track and respond to the individual actions of every player. Convergence of the ECFP algorithm in terms of average empirical frequency (a notion made precise in the paper) to a subset of the Nash equilibria is proven under the assumption that the game is a potential game with permutation invariant potential function. A more general formulation of ECFP is then given (which subsumes FP as a special case) and convergence results are given for the class of potential games. Furthermore, a distributed formulation of the ECFP algorithm is presented, in which, players endowed with a (possibly sparse) preassigned communication graph, engage in local, non-strategic information exchange to eventually agree on a common equilibrium. Convergence results are proven for the distributed ECFP algorithm.
We study the stochastic bilinear minimax optimization problem, presenting an analysis of the Stochastic ExtraGradient (SEG) method with constant step size, and presenting variations of the method that yield favorable convergence. We first note that t he last iterate of the basic SEG method only contracts to a fixed neighborhood of the Nash equilibrium, independent of the step size. This contrasts sharply with the standard setting of minimization where standard stochastic algorithms converge to a neighborhood that vanishes in proportion to the square-root (constant) step size. Under the same setting, however, we prove that when augmented with iteration averaging, SEG provably converges to the Nash equilibrium, and such a rate is provably accelerated by incorporating a scheduled restarting procedure. In the interpolation setting, we achieve an optimal convergence rate up to tight constants. We present numerical experiments that validate our theoretical findings and demonstrate the effectiveness of the SEG method when equipped with iteration averaging and restarting.
128 - Weizhe Chen , Zihan Zhou , Yi Wu 2021
One practical requirement in solving dynamic games is to ensure that the players play well from any decision point onward. To satisfy this requirement, existing efforts focus on equilibrium refinement, but the scalability and applicability of existin g techniques are limited. In this paper, we propose Temporal-Induced Self-Play (TISP), a novel reinforcement learning-based framework to find strategies with decent performances from any decision point onward. TISP uses belief-space representation, backward induction, policy learning, and non-parametric approximation. Building upon TISP, we design a policy-gradient-based algorithm TISP-PG. We prove that TISP-based algorithms can find approximate Perfect Bayesian Equilibrium in zero-sum one-sided stochastic Bayesian games with finite horizon. We test TISP-based algorithms in various games, including finitely repeated security games and a grid-world game. The results show that TISP-PG is more scalable than existing mathematical programming-based methods and significantly outperforms other learning-based methods.
We present fictitious play dynamics for stochastic games and analyze its convergence properties in zero-sum stochastic games. Our dynamics involves players forming beliefs on opponent strategy and their own continuation payoff (Q-function), and playi ng a greedy best response using estimated continuation payoffs. Players update their beliefs from observations of opponent actions. A key property of the learning dynamics is that update of the beliefs on Q-functions occurs at a slower timescale than update of the beliefs on strategies. We show both in the model-based and model-free cases (without knowledge of player payoff functions and state transition probabilities), the beliefs on strategies converge to a stationary mixed Nash equilibrium of the zero-sum stochastic game.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا