ﻻ يوجد ملخص باللغة العربية
The problem of sending a secret message over the Gaussian multiple-input multiple-output (MIMO) wiretap channel is studied. While the capacity of this channel is known, it is not clear how to construct optimal coding schemes that achieve this capacity. In this work, we use linear operations along with successive interference cancellation to attain effective parallel single-antenna wiretap channels. By using independent scalar Gaussian wiretap codebooks over the resulting parallel channels, the capacity of the MIMO wiretap channel is achieved. The derivation of the schemes is based upon joint triangularization of the channel matrices. We find that the same technique can be used to re-derive capacity expressions for the MIMO wiretap channel in a way that is simple and closely connected to a transmission scheme. This technique allows to extend the previously proven strong security for scalar Gaussian channels to the MIMO case. We further consider the problem of transmitting confidential messages over a two-user broadcast MIMO channel. For that problem, we find that derivation of both the capacity and a transmission scheme is a direct corollary of the proposed analysis for the MIMO wiretap channel.
We study the secrecy capacity of a helper-assisted Gaussian wiretap channel with a source, a legitimate receiver, an eavesdropper and an external helper, where each terminal is equipped with multiple antennas. Determining the secrecy capacity in this
End-to-end learning of communication systems with neural networks and particularly autoencoders is an emerging research direction which gained popularity in the last year. In this approach, neural networks learn to simultaneously optimize encoding an
We propose a new scheme of wiretap lattice coding that achieves semantic security and strong secrecy over the Gaussian wiretap channel. The key tool in our security proof is the flatness factor which characterizes the convergence of the conditional o
We study a deterministic approximation of the two-user multiple access wiretap channel. This approximation enables results beyond the recently shown $tfrac{2}{3}$ secure degrees of freedom (s.d.o.f.) for the Gaussian multiple access channel. While th
In this work, we consider a K-user Gaussian wiretap multiple-access channel (GW-MAC) in which each transmitter has an independent confidential message for the receiver. There is also an external eavesdropper who intercepts the communications. The goa