ﻻ يوجد ملخص باللغة العربية
In this work, we consider a K-user Gaussian wiretap multiple-access channel (GW-MAC) in which each transmitter has an independent confidential message for the receiver. There is also an external eavesdropper who intercepts the communications. The goal is to transmit the messages reliably while keeping them confidential from the eavesdropper. To accomplish this goal, two different approaches have been proposed in prior works, namely, i.i.d. Gaussian random coding and real alignment. However, the former approach fails at moderate and high SNR regimes as its achievable result does not grow with SNR. On the other hand, while the latter approach gives a promising result at the infinite SNR regime, its extension to the finite-SNR regime is a challenging task. To fill the gap between the performance of the existing approaches, in this work, we establish a new scheme in which, at the receivers side, it utilizes an extension of the compute-and-forward decoding strategy and at the transmitters side it exploits lattice alignment, cooperative jamming, and i.i.d. random codes. For the proposed scheme, we derive a new achievable bound on sum secure rate which scales with log(SNR) and hence it outperforms the i.i.d. Gaussian codes in moderate and high SNR regimes. We evaluate the performance of our scheme, both theoretically and numerically. Furthermore, we show that our sum secure rate achieves the optimal sum secure degrees of freedom in the infinite-SNR regime.
This paper presents finite-blocklength achievability bounds for the Gaussian multiple access channel (MAC) and random access channel (RAC) under average-error and maximal-power constraints. Using random codewords uniformly distributed on a sphere and
We study a deterministic approximation of the two-user multiple access wiretap channel. This approximation enables results beyond the recently shown $tfrac{2}{3}$ secure degrees of freedom (s.d.o.f.) for the Gaussian multiple access channel. While th
In this paper, the problem of securely computing a function over the binary modulo-2 adder multiple-access wiretap channel is considered. The problem involves a legitimate receiver that wishes to reliably and efficiently compute a function of distrib
End-to-end learning of communication systems with neural networks and particularly autoencoders is an emerging research direction which gained popularity in the last year. In this approach, neural networks learn to simultaneously optimize encoding an
We propose a new scheme of wiretap lattice coding that achieves semantic security and strong secrecy over the Gaussian wiretap channel. The key tool in our security proof is the flatness factor which characterizes the convergence of the conditional o