ﻻ يوجد ملخص باللغة العربية
FlatCam is a thin form-factor lensless camera that consists of a coded mask placed on top of a bare, conventional sensor array. Unlike a traditional, lens-based camera where an image of the scene is directly recorded on the sensor pixels, each pixel in FlatCam records a linear combination of light from multiple scene elements. A computational algorithm is then used to demultiplex the recorded measurements and reconstruct an image of the scene. FlatCam is an instance of a coded aperture imaging system; however, unlike the vast majority of related work, we place the coded mask extremely close to the image sensor that can enable a thin system. We employ a separable mask to ensure that both calibration and image reconstruction are scalable in terms of memory requirements and computational complexity. We demonstrate the potential of the FlatCam design using two prototypes: one at visible wavelengths and one at infrared wavelengths.
Cassegrain designs can be used to build thin lenses. We analyze the relationships between system thickness and aperture sizes of the two mirrors as well as FoV size. Our analysis shows that decrease in lens thickness imposes tight constraint on the a
Activity detection from first-person videos (FPV) captured using a wearable camera is an active research field with potential applications in many sectors, including healthcare, law enforcement, and rehabilitation. State-of-the-art methods use optica
The proposed black-hole finder mission EXIST will consist of multiple wide-field hard X-ray coded-aperture telescopes. The high science goals set for the mission require innovations in telescope design. In particular, wide energy band coverage and fi
In x-ray coherent scatter tomography, tomographic measurements of the forward scatter distribution are used to infer scatter densities within a volume. A radiopaque 2D pattern placed between the object and the detector array enables the disambiguatio
In this paper we report on the laboratory experiment we settled in the Shanghai Astronomical Observatory (SHAO) to investigate the pyramid wavefront sensor (WFS) ability to measure the differential piston on a sparse aperture. The ultimate goal is to