ترغب بنشر مسار تعليمي؟ اضغط هنا

Joint System and Algorithm Design for Computationally Efficient Fan Beam Coded Aperture X-ray Coherent Scatter Imaging

118   0   0.0 ( 0 )
 نشر من قبل Ikenna Odinaka
 تاريخ النشر 2016
والبحث باللغة English




اسأل ChatGPT حول البحث

In x-ray coherent scatter tomography, tomographic measurements of the forward scatter distribution are used to infer scatter densities within a volume. A radiopaque 2D pattern placed between the object and the detector array enables the disambiguation between different scatter events. The use of a fan beam source illumination to speed up data acquisition relative to a pencil beam presents computational challenges. To facilitate the use of iterative algorithms based on a penalized Poisson log-likelihood function, efficient computational implementation of the forward and backward models are needed. Our proposed implementation exploits physical symmetries and structural properties of the system and suggests a joint system-algorithm design, where the system design choices are influenced by computational considerations, and in turn lead to reduced reconstruction time. Computational-time speedups of approximately 146 and 32 are achieved in the computation of the forward and backward models, respectively. Results validating the forward model and reconstruction algorithm are presented on simulated analytic and Monte Carlo data.



قيم البحث

اقرأ أيضاً

We describe the design and performance of optical elements for an x-ray beam size monitor (xBSM), a device measuring $e^+$ and $e^-$ beam sizes in the CESR-TA storage ring. The device can measure vertical beam sizes of $10-100~mu$m on a turn-by-turn, bunch-by-bunch basis at $e^pm$ beam energies of $sim2-5~$GeV. X-rays produced by a hard-bend magnet pass through a single- or multiple-slit (coded aperture) optical element onto a detector. The coded aperture slit pattern and thickness of masking material forming that pattern can both be tuned for optimal resolving power. We describe several such optical elements and show how well predictions of simple models track measured performances.
In massive data analysis, training and testing data often come from very different sources, and their probability distributions are not necessarily identical. A feature example is nonparametric classification in posterior drift model where the condit ional distributions of the label given the covariates are possibly different. In this paper, we derive minimax rate of the excess risk for nonparametric classification in posterior drift model in the setting that both training and testing data have smooth distributions, extending a recent work by Cai and Wei (2019) who only impose smoothness condition on the distribution of testing data. The minimax rate demonstrates a phase transition characterized by the mutual relationship between the smoothness orders of the training and testing data distributions. We also propose a computationally efficient and data-driven nearest neighbor classifier which achieves the minimax excess risk (up to a logarithm factor). Simulation studies and a real-world application are conducted to demonstrate our approach.
Wide-field (> 100 deg$^2$) hard X-ray coded-aperture telescopes with high angular resolution (< 2) will enable a wide range of time domain astrophysics. For instance, transient sources such as gamma-ray bursts can be precisely localized without assis tance of secondary focusing X-ray telescopes to enable rapid followup studies. On the other hand, high angular resolution in coded-aperture imaging introduces a new challenge in handling the systematic uncertainty: average photon count per pixel is often too small to establish a proper background pattern or model the systematic uncertainty in a time scale where the model remains invariant. We introduce two new techniques to improve detection sensitivity, which are designed for, but not limited to high resolution coded-aperture system: a self-background modeling scheme which utilizes continuous scan or dithering operations, and a Poisson-statistics based probabilistic approach to evaluate the significance of source detection without subtraction in handling the background. We illustrate these new imaging analysis techniques in high resolution coded-aperture telescope using the data acquired by the wide-field hard X-ray telescope ProtoEXIST2 during the high-altitude balloon flight in Fall, 2012. We review the imaging sensitivity of ProtoEXIST2 during the flight, and demonstrate the performance of the new techniques using our balloon flight data in comparison with simulated ideal Poisson background.
By using phase retrieval, Bragg Coherent Diffractive Imaging (BCDI) allows tracking of three-dimensional displacement fields inside individual nanocrystals. Nevertheless, in the presence of significant (1% and higher) strains, such as in the process of a structural phase transformation, fails due to the Bragg peak distortions. Here we present an advanced BCDI algorithm enabling imaging three-dimensional strain fields in highly strained crystals. We test the algorithm on particles simulated to undergo a structural phase transformation. While the conventional algorithm fails in unambiguously reconstructing the phase morphology, our algorithm correctly retrieves the morphology of coexistent phases with a strain difference of 1%. The key novelty is the simultaneous reconstruction of multiple scans of the same nanoparticle at snapshots through the phase transformations. The algorithm enables visualizing phase transformations in nanoparticles of lithium-ion, sodium-ion nanoparticles, and other nanoparticulate materials in working conditions (operando).
The proposed black-hole finder mission EXIST will consist of multiple wide-field hard X-ray coded-aperture telescopes. The high science goals set for the mission require innovations in telescope design. In particular, wide energy band coverage and fi ne angular resolution require relatively thick coded masks and thick detectors compared to their pixel size, which may introduce mask self-collimation and depth-induced image blurring with conventional design approaches. Previously we proposed relatively simple solutions to these potential problems: radial hole for mask selfcollimation and cathode depth sensing detector for image blurring. We have now performed laboratory experiments to explore the potential of these two techniques. The experimental results show that the radial hole mask greatly alleviates mask self-collimation and a ~1 mm resolution depth-sensitive detector scheme can be relatively easily achieved for the large scale required for EXIST.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا