ترغب بنشر مسار تعليمي؟ اضغط هنا

Automatic classification of bengali sentences based on sense definitions present in bengali wordnet

115   0   0.0 ( 0 )
 نشر من قبل Alok Pal
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on the sense definition of words available in the Bengali WordNet, an attempt is made to classify the Bengali sentences automatically into different groups in accordance with their underlying senses. The input sentences are collected from 50 different categories of the Bengali text corpus developed in the TDIL project of the Govt. of India, while information about the different senses of particular ambiguous lexical item is collected from Bengali WordNet. In an experimental basis we have used Naive Bayes probabilistic model as a useful classifier of sentences. We have applied the algorithm over 1747 sentences that contain a particular Bengali lexical item which, because of its ambiguous nature, is able to trigger different senses that render sentences in different meanings. In our experiment we have achieved around 84% accurate result on the sense classification over the total input sentences. We have analyzed those residual sentences that did not comply with our experiment and did affect the results to note that in many cases, wrong syntactic structures and less semantic information are the main hurdles in semantic classification of sentences. The applicational relevance of this study is attested in automatic text classification, machine learning, information extraction, and word sense disambiguation.



قيم البحث

اقرأ أيضاً

In the field of natural language processing and human-computer interaction, human attitudes and sentiments have attracted the researchers. However, in the field of human-computer interaction, human abnormality detection has not been investigated exte nsively and most works depend on image-based information. In natural language processing, effective meaning can potentially convey by all words. Each word may bring out difficult encounters because of their semantic connection with ideas or categories. In this paper, an efficient and effective human abnormality detection model is introduced, that only uses Bengali text. This proposed model can recognize whether the person is in a normal or abnormal state by analyzing their typed Bengali text. To the best of our knowledge, this is the first attempt in developing a text based human abnormality detection system. We have created our Bengali dataset (contains 2000 sentences) that is generated by voluntary conversations. We have performed the comparative analysis by using Naive Bayes and Support Vector Machine as classifiers. Two different feature extraction techniques count vector, and TF-IDF is used to experiment on our constructed dataset. We have achieved a maximum 89% accuracy and 92% F1-score with our constructed dataset in our experiment.
Exponential growths of social media and micro-blogging sites not only provide platforms for empowering freedom of expressions and individual voices but also enables people to express anti-social behaviour like online harassment, cyberbullying, and ha te speech. Numerous works have been proposed to utilize these data for social and anti-social behaviours analysis, document characterization, and sentiment analysis by predicting the contexts mostly for highly resourced languages such as English. However, there are languages that are under-resources, e.g., South Asian languages like Bengali, Tamil, Assamese, Telugu that lack of computational resources for the NLP tasks. In this paper, we provide several classification benchmarks for Bengali, an under-resourced language. We prepared three datasets of expressing hate, commonly used topics, and opinions for hate speech detection, document classification, and sentiment analysis, respectively. We built the largest Bengali word embedding models to date based on 250 million articles, which we call BengFastText. We perform three different experiments, covering document classification, sentiment analysis, and hate speech detection. We incorporate word embeddings into a Multichannel Convolutional-LSTM (MConv-LSTM) network for predicting different types of hate speech, document classification, and sentiment analysis. Experiments demonstrate that BengFastText can capture the semantics of words from respective contexts correctly. Evaluations against several baseline embedding models, e.g., Word2Vec and GloVe yield up to 92.30%, 82.25%, and 90.45% F1-scores in case of document classification, sentiment analysis, and hate speech detection, respectively during 5-fold cross-validation tests.
The exponential growths of social media and micro-blogging sites not only provide platforms for empowering freedom of expressions and individual voices, but also enables people to express anti-social behaviour like online harassment, cyberbullying, a nd hate speech. Numerous works have been proposed to utilize textual data for social and anti-social behaviour analysis, by predicting the contexts mostly for highly-resourced languages like English. However, some languages are under-resourced, e.g., South Asian languages like Bengali, that lack computational resources for accurate natural language processing (NLP). In this paper, we propose an explainable approach for hate speech detection from the under-resourced Bengali language, which we called DeepHateExplainer. Bengali texts are first comprehensively preprocessed, before classifying them into political, personal, geopolitical, and religious hates using a neural ensemble method of transformer-based neural architectures (i.e., monolingual Bangla BERT-base, multilingual BERT-cased/uncased, and XLM-RoBERTa). Important(most and least) terms are then identified using sensitivity analysis and layer-wise relevance propagation(LRP), before providing human-interpretable explanations. Finally, we compute comprehensiveness and sufficiency scores to measure the quality of explanations w.r.t faithfulness. Evaluations against machine learning~(linear and tree-based models) and neural networks (i.e., CNN, Bi-LSTM, and Conv-LSTM with word embeddings) baselines yield F1-scores of 78%, 91%, 89%, and 84%, for political, personal, geopolitical, and religious hates, respectively, outperforming both ML and DNN baselines.
Finding the semantically accurate answer is one of the key challenges in advanced searching. In contrast to keyword-based searching, the meaning of a question or query is important here and answers are ranked according to relevance. It is very natura l that there is almost no common word between the question sentence and the answer sentence. In this paper, an approach is described to find out the semantically relevant answers in the Bengali dataset. In the first part of the algorithm, a set of statistical parameters like frequency, index, part-of-speech (POS), etc. is matched between a question and the probable answers. In the second phase, entropy and similarity are calculated in different modules. Finally, a sense score is generated to rank the answers. The algorithm is tested on a repository containing a total of 275000 sentences. This Bengali repository is a product of Technology Development for Indian Languages (TDIL) project sponsored by Govt. of India and provided by the Language Research Unit of Indian Statistical Institute, Kolkata. The shallow parser, developed by the LTRC group of IIIT Hyderabad is used for POS tagging. The actual answer is ranked as 1st in 82.3% cases. The actual answer is ranked within 1st to 5th in 90.0% cases. The accuracy of the system is coming as 97.32% and precision of the system is coming as 98.14% using confusion matrix. The challenges and pitfalls of the work are reported at last in this paper.
Contextual embeddings represent a new generation of semantic representations learned from Neural Language Modelling (NLM) that addresses the issue of meaning conflation hampering traditional word embeddings. In this work, we show that contextual embe ddings can be used to achieve unprecedented gains in Word Sense Disambiguation (WSD) tasks. Our approach focuses on creating sense-level embeddings with full-coverage of WordNet, and without recourse to explicit knowledge of sense distributions or task-specific modelling. As a result, a simple Nearest Neighbors (k-NN) method using our representations is able to consistently surpass the performance of previous systems using powerful neural sequencing models. We also analyse the robustness of our approach when ignoring part-of-speech and lemma features, requiring disambiguation against the full sense inventory, and revealing shortcomings to be improved. Finally, we explore applications of our sense embeddings for concept-level analyses of contextual embeddings and their respective NLMs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا