ترغب بنشر مسار تعليمي؟ اضغط هنا

Stability of steady states for a class of flocculation equations with growth and removal

645   0   0.0 ( 0 )
 نشر من قبل Inom Mirzaev
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Flocculation is the process whereby particles (i.e., flocs) in suspension reversibly combine and separate. The process is widespread in soft matter and aerosol physics as well as environmental science and engineering. We consider a general size-structured flocculation model, which describes the evolution of flocs in an aqueous environment. Our work provides a unified treatment for many size-structured models in the environmental, industrial, medical, and marine engineering literature. In particular, our model accounts for basic biological phenomena in a population of microorganisms including growth, death, sedimentation, predation, renewal, fragmentation and aggregation. Our central goal in this paper is to rigorously investigate the long-term behavior of this generalized flocculation model. Using results from fixed point theory we derive conditions for the existence of continuous, non-trivial stationary solutions. We further apply the principle of linearized stability and semigroup compactness arguments to provide sufficient conditions for local exponential stability of stationary solutions as well as sufficient conditions for instability. Abstract. The end results of this analytical development are relatively simple inequality-criteria which thus allows for the rapid evaluation of the existence and stability of a non-trivial stationary solution. To our knowledge, this work is the first to derive precise existence and stability criteria for such a generalized model. Lastly, we also provide an illustrating application of this criteria to several flocculation models.



قيم البحث

اقرأ أيضاً

Flocculation is the process whereby particles (i.e., flocs) in suspension reversibly combine and separate. The process is widespread in soft matter and aerosol physics as well as environmental science and engineering. We consider a general size-struc tured flocculation model, which describes the evolution of floc size distribution in an aqueous environment. Our work provides a unified treatment for many size-structured models in the environmental, industrial, medical, and marine engineering literature. In particular, the mathematical model considered in this work accounts for basic biological phenomena in a population of microorganisms including growth, death, sedimentation, predation, surface erosion, renewal, fragmentation and aggregation. The central objective of this work is to prove existence of positive steady states of this generalized flocculation model. Using results from fixed point theory we derive conditions for the existence of continuous, non-trivial stationary solutions. We further develop a numerical scheme based on spectral collocation method to approximate these positive stationary solutions. We explore the stationary solutions of the model for various biologically relevant parameters and give valuable insights for the efficient removal of suspended particles.
We study the question of existence of positive steady states of nonlinear evolution equations. We recast the steady state equation in the form of eigenvalue problems for a parametrised family of unbounded linear operators, which are generators of str ongly continuous semigroups; and a fixed point problem. In case of irreducible governing semigroups we consider evolution equations with non-monotone nonlinearities of dimension two, and we establish a new fixed point theorem for set-valued maps. In case of reducible governing semigroups we establish results for monotone nonlinearities of any finite dimension $n$. In addition, we establish a non-quasinilpotency result for a class of strictly positive operators, which are neither irreducible nor compact, in general. We illustrate our theoretical results with examples of partial differential equations arising in structured population dynamics. In particular, we establish existence of positive steady states of a size-structured juvenile-adult and a structured consumer-resource population model, as well as for a selection-mutation model with distributed recruitment process.
Structured population models are a class of general evolution equations which are widely used in the study of biological systems. Many theoretical methods are available for establishing existence and stability of steady states of general evolution eq uations. However, except for very special cases, finding an analytical form of stationary solutions for evolution equations is a challenging task. In the present paper, we develop a numerical framework for computing approximations to stationary solutions of general evolution equations, which can also be used to produce existence and stability regions for steady states. In particular, we use the Trotter-Kato Theorem to approximate the infinitesimal generator of an evolution equation on a finite dimensional space, which in turn reduces the evolution equation into a system of ordinary differential equations. Consequently, we approximate and study the asymptotic behavior of stationary solutions. We illustrate the convergence of our numerical framework by applying it to a linear Sinko-Streifer structured population model for which the exact form of the steady state is known. To further illustrate the utility of our approach, we apply our framework to nonlinear population balance equation, which is an extension of well-known Smoluchowksi coagulation-fragmentation model to biological populations. We also demonstrate that our numerical framework can be used to gain insight about the theoretical stability of the stationary solutions of the evolution equations. Furthermore, the open source Python program that we have developed for our numerical simulations is freely available from our Github repository (github.com/MathBioCU).
We investigate the stability of ground states to a nonlinear focusing Schrodinger equation in presence of a Kirchhoff term. Through a spectral analysis of the linearized operator about ground states, we show a modulation stability estimate of ground states in the spirit of one due to Weinstein [{it SIAM J. Math. Anal.}, 16(1985),472-491].
In this paper we use a unified way studying the decay estimate for a class of dispersive semigroup given by $e^{itphi(sqrt{-Delta})}$, where $phi: mathbb{R}^+to mathbb{R}$ is smooth away from the origin. Especially, the decay estimates for the soluti ons of the Klein-Gordon equation and the beam equation are simplified and slightly improved.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا