ترغب بنشر مسار تعليمي؟ اضغط هنا

Positive steady states of evolution equations with finite dimensional nonlinearities

142   0   0.0 ( 0 )
 نشر من قبل Jozsef Farkas
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the question of existence of positive steady states of nonlinear evolution equations. We recast the steady state equation in the form of eigenvalue problems for a parametrised family of unbounded linear operators, which are generators of strongly continuous semigroups; and a fixed point problem. In case of irreducible governing semigroups we consider evolution equations with non-monotone nonlinearities of dimension two, and we establish a new fixed point theorem for set-valued maps. In case of reducible governing semigroups we establish results for monotone nonlinearities of any finite dimension $n$. In addition, we establish a non-quasinilpotency result for a class of strictly positive operators, which are neither irreducible nor compact, in general. We illustrate our theoretical results with examples of partial differential equations arising in structured population dynamics. In particular, we establish existence of positive steady states of a size-structured juvenile-adult and a structured consumer-resource population model, as well as for a selection-mutation model with distributed recruitment process.



قيم البحث

اقرأ أيضاً

96 - J. Z. Farkas , P. Hinow 2010
We investigate steady states of a quasilinear first order hyperbolic partial integro-differential equation. The model describes the evolution of a hierarchical structured population with distributed states at birth. Hierarchical size-structured model s describe the dynamics of populations when individuals experience size-specific environment. This is the case for example in a population where individuals exhibit cannibalistic behavior and the chance to become prey (or to attack) depends on the individuals size. The other distinctive feature of the model is that individuals are recruited into the population at arbitrary size. This amounts to an infinite rank integral operator describing the recruitment process. First we establish conditions for the existence of a positive steady state of the model. Our method uses a fixed point result of nonlinear maps in conical shells of Banach spaces. Then we study stability properties of steady states for the special case of a separable growth rate using results from the theory of positive operators on Banach lattices.
Structured population models are a class of general evolution equations which are widely used in the study of biological systems. Many theoretical methods are available for establishing existence and stability of steady states of general evolution eq uations. However, except for very special cases, finding an analytical form of stationary solutions for evolution equations is a challenging task. In the present paper, we develop a numerical framework for computing approximations to stationary solutions of general evolution equations, which can also be used to produce existence and stability regions for steady states. In particular, we use the Trotter-Kato Theorem to approximate the infinitesimal generator of an evolution equation on a finite dimensional space, which in turn reduces the evolution equation into a system of ordinary differential equations. Consequently, we approximate and study the asymptotic behavior of stationary solutions. We illustrate the convergence of our numerical framework by applying it to a linear Sinko-Streifer structured population model for which the exact form of the steady state is known. To further illustrate the utility of our approach, we apply our framework to nonlinear population balance equation, which is an extension of well-known Smoluchowksi coagulation-fragmentation model to biological populations. We also demonstrate that our numerical framework can be used to gain insight about the theoretical stability of the stationary solutions of the evolution equations. Furthermore, the open source Python program that we have developed for our numerical simulations is freely available from our Github repository (github.com/MathBioCU).
We study the problem of global exponential stabilization of original Burgers equations and the Burgers equation with nonlocal nonlinearities by controllers depending on finitely many parameters. It is shown that solutions of the controlled equations are steering a concrete solution of the non-controlled system as $trightarrow infty$ with an exponential rate.
We are concerned with the following nonlinear Schrodinger equation $$-varepsilon^2Delta u+ V(x)u=|u|^{p-2}u,~uin H^1(R^N),$$ where $Ngeq 3$, $2<p<frac{2N}{N-2}$. For $varepsilon$ small enough and a class of $V(x)$, we show the uniqueness of positiv e multi-bump solutions concentrating at $k$ different critical points of $V(x)$ under certain assumptions on asymptotic behavior of $V(x)$ and its first derivatives near those points. The degeneracy of critical points is allowed in this paper.
Flocculation is the process whereby particles (i.e., flocs) in suspension reversibly combine and separate. The process is widespread in soft matter and aerosol physics as well as environmental science and engineering. We consider a general size-struc tured flocculation model, which describes the evolution of flocs in an aqueous environment. Our work provides a unified treatment for many size-structured models in the environmental, industrial, medical, and marine engineering literature. In particular, our model accounts for basic biological phenomena in a population of microorganisms including growth, death, sedimentation, predation, renewal, fragmentation and aggregation. Our central goal in this paper is to rigorously investigate the long-term behavior of this generalized flocculation model. Using results from fixed point theory we derive conditions for the existence of continuous, non-trivial stationary solutions. We further apply the principle of linearized stability and semigroup compactness arguments to provide sufficient conditions for local exponential stability of stationary solutions as well as sufficient conditions for instability. Abstract. The end results of this analytical development are relatively simple inequality-criteria which thus allows for the rapid evaluation of the existence and stability of a non-trivial stationary solution. To our knowledge, this work is the first to derive precise existence and stability criteria for such a generalized model. Lastly, we also provide an illustrating application of this criteria to several flocculation models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا