ترغب بنشر مسار تعليمي؟ اضغط هنا

Revisiting the luminosity function of single halo white dwarfs

506   0   0.0 ( 0 )
 نشر من قبل Santiago Torres
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

White dwarfs are the fossils left by the evolution of low-and intermediate-mass stars, and have very long evolutionary timescales. This allows us to use them to explore the properties of old populations, like the Galactic halo. We present a population synthesis study of the luminosity function of halo white dwarfs, aimed at investigating which information can be derived from the currently available observed data. We employ an up-to-date population synthesis code based on Monte Carlo techniques, that incorporates the most recent and reliable cooling sequences for metal poor progenitors as well as an accurate modeling of the observational biases. We find that because the observed sample of halo white dwarfs is restricted to the brightest stars only the hot branch of the white dwarf luminosity function can be used for such purposes, and that its shape function is almost insensitive to the most relevant inputs, like the adopted cooling sequences, the initial mass function, the density profile of the stellar spheroid, or the adopted fraction of unresolved binaries. Moreover, since the cut-off of the observed luminosity has not been yet determined only lower limits to the age of the halo population can be placed. We conclude that the current observed sample of the halo white dwarf population is still too small to obtain definite conclusions about the properties of the stellar halo, and the recently computed white dwarf cooling sequences which incorporate residual hydrogen burning should be assessed using metal-poor globular clusters.



قيم البحث

اقرأ أيضاً

We analyze the volume-limited nearly complete 100 pc sample of 95 halo white dwarf candidates identified by the second data release of Gaia. Based on a detailed population synthesis model, we apply a method that relies on Gaia astrometry and photomet ry to accurately derive the individual white dwarf parameters (mass, radius, effective temperature, bolometric luminosity and age). This method is tested with 25 white dwarfs of our sample for which we took optical spectra and performed spectroscopic analysis. We build and analyse the halo white dwarf luminosity function, for which we find for the first time possible evidences of the cut-off at its faintest end, leading to an age estimate of $simeq12pm0.5 $Gyr. The mass distribution of the sample peaks at $0.589,M_{odot}$, with $71%$ of the white dwarf masses below $0.6,M_{odot}$ and just two massive white dwarfs of more than $0.8,M_{odot}$. From the age distribution we find three white dwarfs with total ages above 12 Gyr, of which J1312-4728 is the oldest white dwarf known with an age of $12.41pm0.22 $Gyr. We prove that the star formation history is mainly characterised by a burst of star formation that occurred from 10 to 12 Gyr in the past, but extended up to 8 Gyr. We also find that the peak of the star formation history is centered at around 11 Gyr, which is compatible with the current age of the Gaia-Enceladus encounter. Finally, $13%$ of our halo sample is contaminated by high-speed young objects (total age<7 Gyr). The origin of these white dwarfs is unclear but their age distribution may be compatible with the encounter with the Sagittarius galaxy.
The evolution of white dwarfs is a simple gravothermal process of cooling. Since the shape of their luminosity function is sensitive to the characteristic cooling time, it is possible to use its slope to test the existence of additional sources or si nks of energy, such as those predicted by alternative physical theories. The aim of this paper is to study if the changes in the slope of the white dwarf luminosity function around bolometric magnitudes ranging from 8 to 10 and previously attributed to axion emission are, effectively, a consequence of the existence of axions and not an artifact introduced by the star formatio rate. We compute theoretical luminosity functions of the thin and thick disk, and of the stellar halo including axion emission and we compare them with the existing observed luminosity functions. Since these stellar populations have different star formation histories, the slope change should be present in all of them at the same place if it is due to axions or any other intrinsic cooling mechanism. The signature of an unexpected cooling seems to be present in the luminosity functions of the thin and thick disks, as well as in the halo luminosity function. This additional cooling is compatible with axion emission, thus supporting the idea that DFSZ axions, with a mass in the range of 4 to 10 meV, could exist. If this were the case, these axions could be detected by the future solar axioscope IAXO.
We present optical spectroscopy for 18 halo white dwarfs identified using photometry from the Canada-France Imaging Survey and Pan-STARRS1 DR1 3$pi$ survey combined with astrometry from Gaia DR2. The sample contains 13 DA, 1 DZ, 2 DC, and two potenti ally exotic types of white dwarf. We fit both the spectrum and the spectral energy distribution in order to obtain the temperature and surface gravity, which we then convert into a mass, and then an age, using stellar isochrones and the initial-to-final mass relation. We find a large spread in ages that is not consistent with expected formation scenarios for the Galactic halo. We find a mean age of 9.03$^{+2.13}_{-2.03}$ Gyr and a dispersion of 4.21$^{+2.33}_{-1.58}$ Gyr for the inner halo using a maximum likelihood method. This result suggests an extended star formation history within the local halo population.
161 - Justin M. Brown 2011
We describe spectroscopic observations of 21 low-mass (<0.45 M_sun) white dwarfs (WDs) from the Palomar-Green Survey obtained over four years. We use both radial velocities and infrared photometry to identify binary systems, and find that the fractio n of single, low-mass WDs is <30%. We discuss the potential formation channels for these single stars including binary mergers of lower-mass objects. However, binary mergers are not likely to explain the observed number of single low-mass WDs. Thus additional formation channels, such as enhanced mass loss due to winds or interactions with substellar companions, are likely.
A number of so-called ultra-cool white dwarfs have been detected in different surveys so far. However, based on anecdotal evidence it is believed that most or all of these ultra-cool white dwarfs are low-mass products of binary evolution and thus not representative for the oldest white dwarfs. Their low mass causes relatively high luminosity making them the first cool white dwarfs detected in relatively shallow surveys. Deeper observations are needed for the oldest, high mass white dwarfs with the longest cooling times. We report results of an ongoing project that combines deep IR and optical data. This combination plus proper motion information will allow an unambiguous identification of very cool white dwarfs, since the spectral energy distributions are very different from other types of stellar objects. The atmospheric parameters that can be derived from the spectral energy distributions together with the proper motions inferred from the IR data can be used to construct the white dwarf luminosity functions for the thick disc and halo populations. From these we will be able to test the early star formation history and initial mass function of the first stellar populations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا