ترغب بنشر مسار تعليمي؟ اضغط هنا

Axions and the luminosity function of white dwarfs. The thin and thick disks, and the halo

316   0   0.0 ( 0 )
 نشر من قبل Jordi Isern
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The evolution of white dwarfs is a simple gravothermal process of cooling. Since the shape of their luminosity function is sensitive to the characteristic cooling time, it is possible to use its slope to test the existence of additional sources or sinks of energy, such as those predicted by alternative physical theories. The aim of this paper is to study if the changes in the slope of the white dwarf luminosity function around bolometric magnitudes ranging from 8 to 10 and previously attributed to axion emission are, effectively, a consequence of the existence of axions and not an artifact introduced by the star formatio rate. We compute theoretical luminosity functions of the thin and thick disk, and of the stellar halo including axion emission and we compare them with the existing observed luminosity functions. Since these stellar populations have different star formation histories, the slope change should be present in all of them at the same place if it is due to axions or any other intrinsic cooling mechanism. The signature of an unexpected cooling seems to be present in the luminosity functions of the thin and thick disks, as well as in the halo luminosity function. This additional cooling is compatible with axion emission, thus supporting the idea that DFSZ axions, with a mass in the range of 4 to 10 meV, could exist. If this were the case, these axions could be detected by the future solar axioscope IAXO.



قيم البحث

اقرأ أيضاً

We present a detailed analysis of the white dwarf luminosity functions derived from the local 40 pc sample and the deep proper motion catalog of Munn et al (2014, 2017). Many of the previous studies ignored the contribution of thick disk white dwarfs to the Galactic disk luminosity function, which results in an erronous age measurement. We demonstrate that the ratio of thick/thin disk white dwarfs is roughly 20% in the local sample. Simultaneously fitting for both disk components, we derive ages of 6.8-7.0 Gyr for the thin disk and 8.7 $pm$ 0.1 Gyr for the thick disk from the local 40 pc sample. Similarly, we derive ages of 7.4-8.2 Gyr for the thin disk and 9.5-9.9 Gyr for the thick disk from the deep proper motion catalog, which shows no evidence of a deviation from a constant star formation rate in the past 2.5 Gyr. We constrain the time difference between the onset of star formation in the thin disk and the thick disk to be $1.6^{+0.3}_{-0.4}$ Gyr. The faint end of the luminosity function for the halo white dwarfs is less constrained, resulting in an age estimate of $12.5^{+1.4}_{-3.4}$ Gyr for the Galactic inner halo. This is the first time ages for all three major components of the Galaxy are obtained from a sample of field white dwarfs that is large enough to contain significant numbers of disk and halo objects. The resultant ages agree reasonably well with the age estimates for the oldest open and globular clusters.
White dwarfs are the fossils left by the evolution of low-and intermediate-mass stars, and have very long evolutionary timescales. This allows us to use them to explore the properties of old populations, like the Galactic halo. We present a populatio n synthesis study of the luminosity function of halo white dwarfs, aimed at investigating which information can be derived from the currently available observed data. We employ an up-to-date population synthesis code based on Monte Carlo techniques, that incorporates the most recent and reliable cooling sequences for metal poor progenitors as well as an accurate modeling of the observational biases. We find that because the observed sample of halo white dwarfs is restricted to the brightest stars only the hot branch of the white dwarf luminosity function can be used for such purposes, and that its shape function is almost insensitive to the most relevant inputs, like the adopted cooling sequences, the initial mass function, the density profile of the stellar spheroid, or the adopted fraction of unresolved binaries. Moreover, since the cut-off of the observed luminosity has not been yet determined only lower limits to the age of the halo population can be placed. We conclude that the current observed sample of the halo white dwarf population is still too small to obtain definite conclusions about the properties of the stellar halo, and the recently computed white dwarf cooling sequences which incorporate residual hydrogen burning should be assessed using metal-poor globular clusters.
Axions are the natural consequence of the introduction of the Peccei-Quinn symmetry to solve the strong CP problem. All the efforts to detect such elusive particles have failed up to now. Nevertheless, it has been recently shown that the luminosity f unction of white dwarfs is best fitted if axions with a mass of a few meV are included in the evolutionary calculations. Our aim is to show that variable white dwarfs can provide additional and independent evidence about the existence of axions. The evolution of a white dwarf is a slow cooling process that translates into a secular increase of the pulsation periods of some variable white dwarfs, the so-called DAV and DBV types. Since axions can freely escape from such stars, their existence would increase the cooling rate and, consequently, the rate of change of the periods as compared with the standard ones. The present values of the rate of change of the pulsation period of G117-B15A are compatible with the existence of axions with the masses suggested by the luminosity function of white dwarfs, in contrast with previous estimations. Furthermore, it is shown that if such axions indeed exist, the drift of the periods of pulsation of DBV stars would be noticeably perturbed.
Gaia-DR2 has provided an unprecedented number of white dwarf candidates of our Galaxy. In particular, it is estimated that Gaia-DR2 has observed nearly 400,000 of these objects and close to 18,000 up to 100 pc from the Sun. This large quantity of dat a requires a thorough analysis in order to uncover their main Galactic population properties, in particular the thin and thick disk and halo components. Taking advantage of recent developments in artificial intelligence techniques, we make use of a detailed Random Forest algorithm to analyse an 8-dimensional space (equatorial coordinates, parallax, proper motion components and photometric magnitudes) of accurate data provided by Gaia-DR2 within 100 pc from the Sun. With the aid of a thorough and robust population synthesis code we simulated the different components of the Galactic white dwarf population to optimize the information extracted from the algorithm for disentangling the different population components. The algorithm is first tested in a known simulated sample achieving an accuracy of 85.3%. Our methodology is thoroughly compared to standard methods based on kinematic criteria demonstrating that our algorithm substantially improves previous approaches. Once trained, the algorithm is then applied to the Gaia-DR2 100 pc white dwarf sample, identifying 12,227 thin disk, 1,410 thick disk and 95 halo white dwarf candidates, which represent a proportion of 74:25:1, respectively. Hence, the numerical spatial densities are $(3.6pm0.4)times10^{-3},{rm pc^{-3}}$, $(1.2pm0.4)times10^{-3},{rm pc^{-3}}$ and $(4.8pm0.4)times10^{-5},{rm pc^{-3}}$ for the thin disk, thick disk and halo components, respectively. The populations thus obtained represent the most complete and volume-limited samples to date of the different components of the Galactic white dwarf population.
This paper focuses on carbon that is one of the most abundant elements in the Universe and is of high importance in the field of nucleosynthesis and galactic and stellar evolution. Even nowadays, the origin of carbon and the relative importance of ma ssive and low- to intermediate-mass stars in producing it is still a matter of debate. In this paper we aim at better understanding the origin of carbon by studying the trends of [C/H], [C/Fe],and [C/Mg] versus [Fe/H], and [Mg/H] for 2133 FGK dwarf stars from the fifth Gaia-ESO Survey internal data release (GES iDR5). The availability of accurate parallaxes and proper motions from Gaia DR2 and radial velocities from GES iDR5 allows us to compute Galactic velocities, orbits and absolute magnitudes and, for 1751 stars, ages via a Bayesian approach. Three different selection methodologies have been adopted to discriminate between thin and thick disk stars. In all the cases, the two stellar groups show different abundance ratios, [C/H], [C/Fe], and [C/Mg], and span different age intervals, with the thick disk stars being, on average, older than those in the thin disk. The behaviours of [C/H], [C/Fe], and [C/Mg] versus [Fe/H], [Mg/H], and age all suggest that C is primarily produced in massive stars like Mg. The increase of [C/Mg] for young thin disk stars indicates a contribution from low-mass stars or the increased C production from massive stars at high metallicities due to the enhanced mass loss. The analysis of the orbital parameters Rmed and |Zmax| support an inside-out and upside-down formation scenario for the disks of Milky Way.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا