ﻻ يوجد ملخص باللغة العربية
Finding new two-dimensional (2D) materials with novel quantum properties is highly desirable for technological innovations. In this work, we studied a series of metal-organic frameworks (MOFs) with different metal cores and discovered various attractive properties, such as room-temperature magnetic ordering, strong perpendicular magnetic anisotropy, huge topological band gap (>200meV), and excellent spin-filtering performance. As many MOFs have been successfully synthesized in experiments, our results suggest realistic new 2D functional materials for the design of spintronic nanodevices.
Searching for novel two-dimensional (2D) materials is crucial for the development of the next generation technologies such as electronics, optoelectronics, electrochemistry and biomedicine. In this work, we designed a series of 2D materials based on
The enormous structural and chemical diversity of metal-organic frameworks (MOFs) forces researchers to actively use simulation techniques on an equal footing with experiments. MOFs are widely known for outstanding adsorption properties, so precise d
We present a three-dimensional Ising model where lines of equal spins are frozen in such that they form an ordered framework structure. The frame spins impose an external field on the rest of the spins (active spins). We demonstrate that this porous
A new multifunctional 2D material is theoretically predicted based on systematic ab-initio calculations and model simulations for the honeycomb lattice of endohedral fullerene W@C28 molecules. It has structural bistability, ferroelectricity, multiple
Two-dimensional (2D) materials are strongly affected by the dielectric environment including substrates, making it an important factor in designing materials for quantum and electronic technologies. Yet, first-principles evaluation of charged defect