ﻻ يوجد ملخص باللغة العربية
In this paper, the master equation for the coupled lossy waveguides is solved using the thermofield dynamics(TFD) formalism. This formalism allows the use of the underlying symmetry algebras SU(2) and SU(1,1), associated with the Hamiltonian of the coupled lossy waveguides,to compute entanglement and decoherence as a function of time for various input states such as NOON states and thermal states.
The use of squeezing and entanglement allows advanced interferometers to detect signals that would otherwise be buried in quantum mechanical noise. High sensitivity instruments including magnetometers and gravitational wave detectors have shown enhan
A sufficient condition for a state |psi> to minimize the Robertson-Schr{o}dinger uncertainty relation for two observables A and B is obtained which for A with no discrete spectrum is also a necessary one. Such states, called generalized intelligent s
In this communication we discuss SU(1,1)- and SU(2)-squeezing of an interacting system of radiation modes in a quadratic medium in the framework of Lie algebra. We show that regardless of which state being initially considered, squeezing can be periodically generated.
In this paper, we derive a general expression of the quantum Fisher information of an SU(1,1) interferometer with an arbitrary state and a Fock state as inputs by the phase-averaging method. Our results show that the same quantum Fisher information c
The quantum stochastic phase estimation has many applications in the precise measurement of various physical parameters. Similar to the estimation of a constant phase, there is a standard quantum limit for stochastic phase estimation, which can be ob