ﻻ يوجد ملخص باللغة العربية
In this paper, we derive a general expression of the quantum Fisher information of an SU(1,1) interferometer with an arbitrary state and a Fock state as inputs by the phase-averaging method. Our results show that the same quantum Fisher information can be obtained regardless of the specific form of the arbitrary state. Then, we analytically prove that the parity measurement can saturate the quantum Cramer-Rao bound when the estimated phase sits at the optimal working point. For practical reasons, we investigate the phase sensitivity when the arbitrary state is a coherent or thermal state. We further show that a Fock state can indeed enhance the phase sensitivity within a constraint on the total mean photon number inside the interferometer.
We present a new operator method in the Heisenberg representation to obtain the signal of parity measurement within a lossless SU(1,1) interferometer. Based on this method, it is convenient to derive the parity signal directly in terms of input state
The quantum stochastic phase estimation has many applications in the precise measurement of various physical parameters. Similar to the estimation of a constant phase, there is a standard quantum limit for stochastic phase estimation, which can be ob
Active interferometers use amplifying elements for beam splitting and recombination. We experimentally implement such a device by using spin exchange in a Bose-Einstein condensate. The two interferometry modes are initially empty spin states that get
We theoretically derive the lower and upper bounds of quantum Fisher information (QFI) of an SU(1,1) interferometer whatever the input state chosen. According to the QFI, the crucial resource for quantum enhancement is shown to be large intramode cor
The use of squeezing and entanglement allows advanced interferometers to detect signals that would otherwise be buried in quantum mechanical noise. High sensitivity instruments including magnetometers and gravitational wave detectors have shown enhan