ﻻ يوجد ملخص باللغة العربية
The spectra of plasma and magnetoplasma excitations in a two-dimensional system of anisotropic heavy fermions were investigated for the first time. The spectrum of microwave absorption by disk-like samples of stressed AlAs quantum wells at low electron densities showed two plasma resonances separated by a frequency gap. These two plasma resonances correspond to electron mass principle values of $(1.10 pm 0.05) m_0$ and $(0.20 pm 0.01) m_0$. The observed results correspond to the case of a single valley strongly anisotropic Fermi surface. It was established that electron density increase results in population of the second valley, manifesting itself as a drastic modification of the plasma spectrum. We directly determined the electron densities in each valley and the inter-valley splitting energy from the ratio of the two plasma frequencies.
We report measurements of the spin susceptibility in dilute two-dimensional electrons confined to a 45$AA$ wide AlAs quantum well. The electrons in this well occupy an out-of-plane conduction-band valley, rendering a system similar to two-dimensional
We studied a doping series of (110)-oriented AlAs quantum wells (QWs) and observed transport evidence of single anisotropic-mass valley occupancy for the electrons in a 150 AA wide QW. Our calculations of strain and quantum confinement for these samp
The double quantum well systems consisting of two HgTe layers separated by a tunnel-transparent barrier are expected to manifest a variety of phase states including two-dimensional gapless semimetal and two-dimensional topological insulator. The pres
We report on transport and capacitance spectroscopy study of two kinds of quantum wells, namely Cd$_{0.02}$Hg$_{0.98}$Te and Cd$_{0.06}$Hg$_{0.94}$Te with the thicknesses of 7.4 and 11.5 nm, accordingly. The fraction of Cd was chosen in a way that th
Terahertz photoconductivity of $100~mu$m and $20~mu$m Hall bars fabricated from narrow AlAs quantum wells (QWs) of different widths is investigated in this paper. The photoresponse is dominated by collective magnetoplasmon excitations within the body