ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiple crossing of Landau levels of two-dimensional fermions in double HgTe quantum wells

84   0   0.0 ( 0 )
 نشر من قبل Gennady Gusev M
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The double quantum well systems consisting of two HgTe layers separated by a tunnel-transparent barrier are expected to manifest a variety of phase states including two-dimensional gapless semimetal and two-dimensional topological insulator. The presence of several subbands in such systems leads to a rich filling factor diagram in the quantum Hall regime. We have performed magnetotransport measurements of the HgTe-based double quantum wells in both gapless and gapped state and observed numerous crossings between the Landau levels belonging to different subbands. We analyze the Landau level crossing patterns and compare them to the results of theoretical calculations.



قيم البحث

اقرأ أيضاً

HgTe/HgCdTe quantum wells with the inverted band structure have been probed using far infrared magneto-spectroscopy. Realistic calculations of Landau level diagrams have been performed to identify the observed transitions. Investigations have been gr eatly focused on the magnetic field dependence of the peculiar pair of zero-mode Landau levels which characteristically split from the upper conduction and bottom valence bands, and merge under the applied magnetic field. The observed avoided crossing of these levels is tentatively attributed to the bulk inversion asymmetry of zinc blend compounds.
We present both the experimental and theoretical investigation of a non-trivial electron Landau levels shift in magnetic field in wide ~20 nm HgTe quantum wells: Landau levels split under magnetic fields but become degenerate again when magnetic fiel d increases. We reproduced this behavior qualitatively within an isotropic 6-band Kane model, then using semiclassical calculations we showed this behavior is due to the mixing of the conduction band with total spin 3/2 with the next well subband with spin 1/2 which reduces the average vertical spin from 3/2 to around 1. This change of the average spin changes the Berry phase explaining the evolution of Landau levels under magnetic field.
We report on the far-infrared magnetospectroscopy of HgTe quantum wells with inverted band ordering at different electron concentrations. We particularly focus on optical transitions from zero-mode Landau levels, which split from the edges of electro n-like and hole-like bands. We observe a pronounced dependence of the transition energies on the electron concentration varied by persistent photoconductivity effect. This is striking evidence that in addition to the already well-documented crystalline and interface asymmetries, electron-electron interactions also have a significant impact on the usual behavior of the optical transitions from zero mode Landau levels.
The two-dimensional topological insulator phase has been observed previously in single HgTe-based quantum wells with inverted subband ordering. In double quantum wells (DQWs), coupling between the layers introduces additional degrees of freedom leadi ng to a rich phase picture. By studying local and nonlocal resistance in HgTe-based DQWs, we observe both the gapless semimetal phase and the topological insulator phase, depending on parameters of the samples and according to theoretical predictions. Our work establishes the DQWs as a promising platform for realization of multilayer topological insulators.
121 - Aleksei A. Sukhanov 2017
We study the energy spectra of bound states in quantum dots (QDs) formed by an electrostatic potential in two-dimensional topological insulator (TI) and their transformation with changes in QD depth and radius. It is found that, unlike a trivial insu lator, the energy difference between the levels of the ground state and first excited state can decrease with decreasing the radius and increasing the depth of the QD so that these levels intersect under some critical conditions. The crossing of the levels results in unusual features of optical properties caused by intracenter electron transitions. In particular, it leads to significant changes of light absorption due to electron transitions between such levels and to the transient electroluminescence induced by electrical tuning of QD and TI parameters. In the case of magnetic TIs, the polarization direction of the absorbed or emitted circularly polarized light is changed due to the level crossing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا