ﻻ يوجد ملخص باللغة العربية
Ground-based exoplanet surveys such as SuperWASP, HATNet and KELT have discovered close to two hundred transiting extrasolar planets in the past several years. The strategy of these surveys is to look at a large field of view and measure the brightnesses of its bright stars to around half a percent per point precision, which is adequate for detecting hot Jupiters. Typically, these surveys use CCD detectors to achieve high precision photometry. These CCDs, however, are expensive relative to other consumer-grade optical imaging devices, such as digital single-lens reflex cameras (DSLRs). We look at the possibility of using a digital single-lens reflex camera for precision photometry. Specifically, we used a Canon EOS 60D camera that records light in 3 colors simultaneously. The DSLR was integrated into the HATNet survey and collected observations for a month, after which photometry was extracted for 6600 stars in a selected stellar field. We found that the DSLR achieves a best-case median absolute deviation (MAD) of 4.6 mmag per 180 s exposure when the DSLR color channels are combined, and 1000 stars are measured to better than 10 mmag (1%). Also, we achieve 10,mmag or better photometry in the individual colors. This is good enough to detect transiting hot Jupiters. We performed a candidate search on all stars and found four candidates, one of which is KELT-3b, the only known transiting hot Jupiter in our selected field. We conclude that the Canon 60D is a cheap, lightweight device capable of useful photometry in multiple colors.
ASTERIA (Arcsecond Space Telescope Enabling Research In Astrophysics) is a 6U CubeSat space telescope (10 cm x 20 cm x 30 cm, 10 kg). ASTERIAs primary mission objective was demonstrating two key technologies for reducing systematic noise in photometr
We present a new method employing machine learning techniques for measuring astrophysical features by correcting systematics in IRAC high precision photometry using Random Forests. The main systematic in IRAC light curve data is position changes due
The Transiting Exoplanet Survey Satellite (TESS, launched early 2018) is expected to find a multitude of new transiting planet candidates around the nearest and brightest stars. Timely high-precision follow-up observations from the ground are essenti
The Kepler mission has provided a wealth of data, revealing new insights in time-domain astronomy. However, Keplers single band-pass has limited studies to a single wavelength. In this work we build a data-driven, pixel-level model for the Pixel Resp
GJ 758 B is a cold (~600K) companion to a Sun-like star at 29 AU projected separation, which was recently detected with high-contrast imaging. Here we present photometry of the companion in seven photometric bands from Subaru/HiCIAO, Gemini/NIRI and