ترغب بنشر مسار تعليمي؟ اضغط هنا

Extreme precision photometry from the ground with beam-shaping diffusers for K2, TESS and beyond

336   0   0.0 ( 0 )
 نشر من قبل Gudmundur Stefansson
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Transiting Exoplanet Survey Satellite (TESS, launched early 2018) is expected to find a multitude of new transiting planet candidates around the nearest and brightest stars. Timely high-precision follow-up observations from the ground are essential in confirming and further characterizing the planet candidates that TESS will find. However, achieving extreme photometric precisions from the ground is challenging, as ground-based telescopes are subject to numerous deleterious atmospheric effects. Beam-shaping diffusers are emerging as a low-cost technology to achieve hitherto unachievable differential photometric precisions from the ground. These diffusers mold the focal plane image of a star into a broad and stable top-hat shape, minimizing photometric errors due to non-uniform pixel response, atmospheric seeing effects, imperfect guiding, and telescope-induced variable aberrations seen in defocusing. In this paper, we expand on our previous work (Stefansson et al. 2017; Stefansson et al. 2018 [submitted]), providing a further detailed discussion of key guidelines when sizing a diffuser for use on a telescope. Furthermore, we present our open source Python package iDiffuse which can calculate the expected PSF size of a diffuser in a telescope system, along with its expected on-sky diffuser-assisted photometric precision for a host star of a given magnitude. We use iDiffuse to show that most ($sim$80%) of the planet hosts that TESS will find will be scintillation limited in transit observations from the ground. Although iDiffuse has primarily been developed to plan challenging transit observations using the diffuser on the ARCTIC imager on the ARC 3.5m Telescope at Apache Point observatory, iDiffuse is modular and can be easily extended to calculate the expected diffuser-assisted photometric precisions on other telescopes.



قيم البحث

اقرأ أيضاً

We demonstrate a path to hitherto unachievable differential photometric precisions from the ground, both in the optical and near-infrared (NIR), using custom-fabricated beam-shaping diffusers produced using specialized nanofabrication techniques. Suc h diffusers mold the focal plane image of a star into a broad and stable top-hat shape, minimizing photometric errors due to non-uniform pixel response, atmospheric seeing effects, imperfect guiding, and telescope-induced variable aberrations seen in defocusing. This PSF reshaping significantly increases the achievable dynamic range of our observations, increasing our observing efficiency and thus better averages over scintillation. Diffusers work in both collimated and converging beams. We present diffuser-assisted optical observations demonstrating $62^{+26}_{-16}$ppm precision in 30 minute bins on a nearby bright star 16-Cygni A (V=5.95) using the ARC 3.5m telescope---within a factor of $sim$2 of Keplers photometric precision on the same star. We also show a transit of WASP-85-Ab (V=11.2) and TRES-3b (V=12.4), where the residuals bin down to $180^{+66}_{-41}$ppm in 30 minute bins for WASP-85-Ab---a factor of $sim$4 of the precision achieved by the K2 mission on this target---and to 101ppm for TRES-3b. In the NIR, where diffusers may provide even more significant improvements over the current state of the art, our preliminary tests have demonstrated $137^{+64}_{-36}$ppm precision for a $K_S =10.8$ star on the 200 Hale Telescope. These photometric precisions match or surpass the expected photometric precisions of TESS for the same magnitude range. This technology is inexpensive, scalable, easily adaptable, and can have an important and immediate impact on the observations of transits and secondary eclipses of exoplanets.
Stellar RV jitter due to surface activity may bias the RV semi-amplitude and mass of rocky planets. The amplitude of the jitter may be estimated from the uncertainty in the rotation period, allowing the mass to be more accurately obtained. We find ca ndidate rotation periods for 17 out of 35 TESS Objects of Interest (TOI) hosting <3 R_Earth planets as part of the Magellan-TESS Survey, which is the first-ever statistically robust study of exoplanet masses and radii across the photo-evaporation gap. Seven periods are 3+ sigma detections, two are 1.5+ sigma, and 8 show plausible variability but the periods remain unconfirmed. The other 18 TOIs are non-detections. Candidate rotators include the host stars of the confirmed planets L 168-9 b, the HD 21749 system, LTT 1445 A b, TOI 1062 b, and the L 98-59 system. 13 candidates have no counterpart in the 1000 TOI rotation catalog of Canto Martins et al. (2020). We find periods for G3-M3 dwarfs using combined light curves from TESS and the Evryscope all-sky array of small telescopes, sometimes with longer periods than would be possible with TESS alone. Secure periods range from 1.4 to 26 d with Evryscope-measured photometric amplitudes as small as 2.1 mmag in g. We also apply Monte Carlo sampling and a Gaussian Process stellar activity model from the code exoplanet to the TESS light curves of 6 TOIs to confirm the Evryscope periods.
Direct exoplanet spectroscopy aims to measure the spectrum of an exoplanet while simultaneously minimizing the light collected from its host star. Isolating the planet light from the starlight improves the signal-to-noise ratio (S/N) per spectral cha nnel when noise due to the star dominates, which may enable new studies of the exoplanet atmosphere with unprecedented detail at high spectral resolution (>30,000). However, the optimal instrument design depends on the flux level from the planet and star compared to the noise due to other sources, such as detector noise and thermal background. Here we present the design, fabrication, and laboratory demonstration of specially-designed optics to improve the S/N in two potential regimes in direct exoplanet spectroscopy with adaptive optics instruments. The first is a pair of beam-shaping lenses that increase the planet signal by improving the coupling efficiency into a single-mode fiber at the known position of the planet. The second is a grayscale apodizer that reduces the diffracted starlight for planets at small angular separations from their host star. The former especially increases S/N when dominated by detector noise or thermal background, while the latter helps reduce stellar noise. We show good agreement between the theoretical and experimental point spread functions in each case and predict the exposure time reduction ($sim 33%$) that each set of optics provides in simulated observations of 51 Eridani b using the Keck Planet Imager and Characterizer instrument at W.M. Keck Observatory.
High-precision time series photometry with the Kepler satellite has been crucial to our understanding both of exoplanets, and via asteroseismology, of stellar physics. After the failure of two reaction wheels, the Kepler satellite has been repurposed as Kepler-2 (K2), observing fields close to the ecliptic plane. As these fields contain many more bright stars than the original Kepler field, K2 provides an unprecedented opportunity to study nearby objects amenable to detailed follow-up with ground-based instruments. Due to bandwidth constraints, only a small fraction of pixels can be downloaded, with the result that most bright stars which saturate the detector are not observed. We show that engineering data acquired for photometric calibration, consisting of collateral `smear measurements, can be used to reconstruct light curves for bright targets not otherwise observable with Kepler/K2. Here we present some examples from Kepler Quarter 6 and K2 Campaign 3, including the delta Scuti variables HD 178875 and 70 Aqr, and the red giant HR 8500 displaying solar-like oscillations. We compare aperture and smear photometry where possible, and also study targets not previously observed. These encouraging results suggest this new method can be applied to most Kepler and K2 fields.
152 - M. Zhang , G. A. Bakos (1 , 2 2015
Ground-based exoplanet surveys such as SuperWASP, HATNet and KELT have discovered close to two hundred transiting extrasolar planets in the past several years. The strategy of these surveys is to look at a large field of view and measure the brightne sses of its bright stars to around half a percent per point precision, which is adequate for detecting hot Jupiters. Typically, these surveys use CCD detectors to achieve high precision photometry. These CCDs, however, are expensive relative to other consumer-grade optical imaging devices, such as digital single-lens reflex cameras (DSLRs). We look at the possibility of using a digital single-lens reflex camera for precision photometry. Specifically, we used a Canon EOS 60D camera that records light in 3 colors simultaneously. The DSLR was integrated into the HATNet survey and collected observations for a month, after which photometry was extracted for 6600 stars in a selected stellar field. We found that the DSLR achieves a best-case median absolute deviation (MAD) of 4.6 mmag per 180 s exposure when the DSLR color channels are combined, and 1000 stars are measured to better than 10 mmag (1%). Also, we achieve 10,mmag or better photometry in the individual colors. This is good enough to detect transiting hot Jupiters. We performed a candidate search on all stars and found four candidates, one of which is KELT-3b, the only known transiting hot Jupiter in our selected field. We conclude that the Canon 60D is a cheap, lightweight device capable of useful photometry in multiple colors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا