ﻻ يوجد ملخص باللغة العربية
A method is developed that allows analysis of quantum Monte Carlo simulations to identify errors in trial wave functions. The purpose of this method is to allow for the systematic improvement of variational wave functions by identifying degrees of freedom that are not well-described by an initial trial state. We provide proof of concept implementations of this method by identifying the need for a Jastrow correlation factor, and implementing a selected multi-determinant wave function algorithm for small dimers that systematically decreases the variational energy. Selection of the two-particle excitations is done using quantum Monte Carlo within the presence of a Jastrow correlation factor, and without the need to explicitly construct the determinants. We also show how this technique can be used to design compact wave functions for transition metal systems. This method may provide a route to analyze and systematically improve descriptions of complex quantum systems in a scalable way.
We present a method for finding individual excited states energy stationary points in complete active space self-consistent field theory that is compatible with standard optimization methods and highly effective at overcoming difficulties due to root
The recent development of the density matrix renormalization group (DMRG) method in multireference quantum chemistry makes it practical to evaluate static correlation in a large active space, while dynamic correlation provides a critical correction t
Site-occupation embedding theory (SOET) is an alternative formulation of density-functional theory (DFT) for model Hamiltonians where the fully-interacting Hubbard problem is mapped, in principle exactly, onto an impurity-interacting (rather than a n
An algorithm is presented to calculate the electronic local time-dependent Greens operator for manganites-related hamiltonians. This algorithm is proved to scale with the number of states $N$ in the Hilbert-space to the 1.55 power, is able of paralle
We present a simple, robust and black-box approach to the implementation and use of local, periodic, atom-centered Gaussian basis functions within a plane wave code, in a computationally efficient manner. The procedure outlined is based on the repres