ترغب بنشر مسار تعليمي؟ اضغط هنا

Externally-Contracted Multi-Reference Configuration Interaction Method Using a DMRG Reference Wave Function

77   0   0.0 ( 0 )
 نشر من قبل Haibo Ma
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent development of the density matrix renormalization group (DMRG) method in multireference quantum chemistry makes it practical to evaluate static correlation in a large active space, while dynamic correlation provides a critical correction to the DMRG reference for strong-correlated systems and is usually obtained using multi-reference perturbation (MRPT) or configuration interaction (MRCI) methods with internal contraction (ic) approximation. These methods can use active space scalable to relatively larger size references than has previously been possible. However, they are still hardly applicable to systems with active space larger than 30 orbitals because of high computation and storage costs of high-order reduced density matrices (RDMs) and the number of virtual orbitals are normally limited to few hundreds. In this work, we propose a new effective implementation of DMRG-MRCI, in which we use re-constructed CASCI-type configurations from DMRG wave function via the entropy-driving genetic algorithm (EDGA), and integrate with MRCI by an external contraction (ec) scheme. This bypasses the bottleneck of computing high-order RDMs in traditional DMRG dynamic correlation methods with ic approximation and the number of MRCI configurations is not dependent on the number of virtual orbitals. Therefore, DMRG-ec-MRCI method is promising for dealing with larger active space than 30 orbitals and large basis sets. We demonstrate the capability of our DMRG-ec-MRCI method in several benchmark applications, including the evaluation of potential energy curve of Cr$_{2}$, single-triplet gaps of higher n-acene molecules and the energy of Eu-BTBP(NO$_3$)$_3$ complex.



قيم البحث

اقرأ أيضاً

The accurate electronic structure calculation for strongly correlated chemical systems requires an adequate description for both static and dynamic electron correlation, and is a persistent challenge for quantum chemistry. In order to account for sta tic and dynamic electron correlations accurately and efficiently, in this work we propose a new method by integrating the density matrix renormalization group (DMRG) method and multi-reference second-order Epstein-Nesbet perturbation theory (ENPT2) with a selected configuration interaction (SCI) approximation. Compared with previous DMRG-based dynamic correlation methods, the DMRG-ENPT2 method extends the range of applicability, allowing us to efficiently calculate systems with very large active space beyond 30 orbitals. We demonstrate this by performing calculations on H$_2$S with an active space of (16e, 15o), hexacene with an active space of (26e, 26o) and 2D H$_{64}$ square lattice with an active space of (42e, 42o).
We extend our recently-developed heat-bath configuration interaction (HCI) algorithm, and our semistochastic algorithm for performing multireference perturbation theory, to the calculation of excited-state wavefunctions and energies. We employ time-r eversal symmetry, which reduces the memory requirements by more than a factor of two. An extrapolation technique is introduced to reliably extrapolate HCI energies to the Full CI limit. The resulting algorithm is used to compute the twelve lowest-lying potential energy surfaces of the carbon dimer using the cc-pV5Z basis set, with an estimated error in energy of 30-50 {mu}Ha compared to Full CI. The excitation energies obtained using our algorithm have a mean absolute deviation of 0.02 eV compared to experimental values. We also calculate the complete active-space (CAS) energies of the S0, S1, and T0 states of tetracene, which are of relevance to singlet fission, by fully correlating active spaces as large as 18 electrons in 36 orbitals.
A method is developed that allows analysis of quantum Monte Carlo simulations to identify errors in trial wave functions. The purpose of this method is to allow for the systematic improvement of variational wave functions by identifying degrees of fr eedom that are not well-described by an initial trial state. We provide proof of concept implementations of this method by identifying the need for a Jastrow correlation factor, and implementing a selected multi-determinant wave function algorithm for small dimers that systematically decreases the variational energy. Selection of the two-particle excitations is done using quantum Monte Carlo within the presence of a Jastrow correlation factor, and without the need to explicitly construct the determinants. We also show how this technique can be used to design compact wave functions for transition metal systems. This method may provide a route to analyze and systematically improve descriptions of complex quantum systems in a scalable way.
We present a method for finding individual excited states energy stationary points in complete active space self-consistent field theory that is compatible with standard optimization methods and highly effective at overcoming difficulties due to root flipping and near-degeneracies. Inspired by both the maximum overlap method and recent progress in excited state variational principles, our approach combines these ideas in order to track individual excited states throughout the orbital optimization process. In a series of tests involving root flipping, near-degeneracies, charge transfers, and double excitations, we show that this approach is more effective for state-specific optimization than either the naive selection of roots based on energy ordering or a more direct generalization of the maximum overlap method. Furthermore, we provide evidence that this state-specific approach improves the performance of complete active space perturbation theory. With a simple implementation, a low cost, and compatibility with large active space methods, the approach is designed to be useful in a wide range of excited state investigations.
We present a purely diagrammatic derivation of the dual fermion scheme [Phys. Rev. B 77 (2008) 033101]. The derivation makes particularly clear that a similar scheme can be developed for an arbitrary reference system provided it has the same interact ion term as the original system. Thereby no restrictions are imposed by the locality of the reference problem or by the nature of the original problem as a lattice one. We present new arguments in favour of keeping the dual denominator in the expression for the lattice self-energy independently of the truncation of the dual interaction. As an example we present the computational results for the half-filled 2D Hubbard model with the choice of a $2times2$ plaquette with periodic boundary conditions as a reference system. We observe that obtained results are in a good agreement with numerically exact lattice quantum Monte Carlo data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا