ترغب بنشر مسار تعليمي؟ اضغط هنا

The dissimilar chemical composition of the planet-hosting stars of the XO-2 binary system

200   0   0.0 ( 0 )
 نشر من قبل Ivan Ramirez
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using high-quality spectra of the twin stars in the XO-2 binary system, we have detected significant differences in the chemical composition of their photospheres. The differences correlate strongly with the elements dust condensation temperature. In XO-2N, volatiles are enhanced by about 0.015 dex and refractories are overabundant by up to 0.090 dex. On average, our error bar in relative abundance is 0.012 dex. We present an early metal-depletion scenario in which the formation of the gas giant planets known to exist around these stars is responsible for a 0.015 dex offset in the abundances of all elements while 20 M_Earth of non-detected rocky objects that formed around XO-2S explain the additional refractory-element difference. An alternative explanation involves the late accretion of at least 20 M_Earth of planet-like material by XO-2N, allegedly as a result of the migration of the hot Jupiter detected around that star. Dust cleansing by a nearby hot star as well as age or Galactic birthplace effects can be ruled out as valid explanations for this phenomenon.



قيم البحث

اقرأ أيضاً

Binary stars hosting exoplanets are a unique laboratory where chemical tagging can be performed to measure with high accuracy the elemental abundances of both stellar components, with the aim to investigate the formation of planets and their subseque nt evolution. Here, we present a high-precision differential abundance analysis of the XO-2 wide stellar binary based on high resolution HARPS-N@TNG spectra. Both components are very similar K-dwarfs and host planets. Since they formed presumably within the same molecular cloud, we expect they should possess the same initial elemental abundances. We investigate if the presence of planets can cause some chemical imprints in the stellar atmospheric abundances. We measure abundances of 25 elements for both stars with a range of condensation temperature $T_{rm C}=40-1741$ K, achieving typical precisions of $sim 0.07$ dex. The North component shows abundances in all elements higher by $+0.067 pm 0.032$ dex on average, with a mean difference of +0.078 dex for elements with $T_{rm C} > 800$ K. The significance of the XO-2N abundance difference relative to XO-2S is at the $2sigma$ level for almost all elements. We discuss the possibility that this result could be interpreted as the signature of the ingestion of material by XO-2N or depletion in XO-2S due to locking of heavy elements by the planetary companions. We estimate a mass of several tens of $M_{oplus}$ in heavy elements. The difference in abundances between XO-2N and XO-2S shows a positive correlation with the condensation temperatures of the elements, with a slope of $(4.7 pm 0.9) times 10^{-5}$ dex K$^{-1}$, which could mean that both components have not formed terrestrial planets, but that first experienced the accretion of rocky core interior to the subsequent giant planets.
This article aims to measure the age of planet-hosting stars (SWP) through stellar tracks and isochrones computed with the textsl{PA}dova & Ttextsl{R}ieste textsl{S}tellar textsl{E}volutionary textsl{C}ode (PARSEC). We developed algorithms based on t wo different techniques for determining the ages of field stars: emph{isochrone placement} and emph{Bayesian estimation}. Their application to a synthetic sample of coeval stars shows the intrinsic limits of each method. For instance, the Bayesian computation of the modal age tends to select the extreme age values in the isochrones grid. Therefore, we used the isochrone placement technique to measure the ages of 317 SWP. We found that $sim6%$ of SWP have ages lower than 0.5 Gyr. The age distribution peaks in the interval [1.5, 2) Gyr, then it decreases. However, $sim7%$ of the stars are older than 11 Gyr. The Sun turns out to be a common star that hosts planets, when considering its evolutionary stage. Our SWP age distribution is less peaked and slightly shifted towards lower ages if compared with ages in the literature and based on the isochrone fit. In particular, there are no ages below 0.5 Gyr in the literature.
103 - F. Liu , D. Yong , M. Asplund 2020
We present a line-by-line differential analysis of a sample of 16 planet hosting stars and 68 comparison stars using high resolution, high signal-to-noise ratio spectra gathered using Keck. We obtained accurate stellar parameters and high-precision r elative chemical abundances with average uncertainties in teff, logg, [Fe/H] and [X/H] of 15 K, 0.034 [cgs], 0.012 dex and 0.025 dex, respectively. For each planet host, we identify a set of comparison stars and examine the abundance differences (corrected for Galactic chemical evolution effect) as a function of the dust condensation temperature, tcond, of the individual elements. While we confirm that the Sun exhibits a negative trend between abundance and tcond, we also confirm that the remaining planet hosts exhibit a variety of abundance $-$ tcond trends with no clear dependence upon age, metallicity or teff. The diversity in the chemical compositions of planet hosting stars relative to their comparison stars could reflect the range of possible planet-induced effects present in these planet hosts, from the sequestration of rocky material (refractory poor), to the possible ingestion of planets (refractory rich). Other possible explanations include differences in the timescale, efficiency and degree of planet formation or inhomogeneous chemical evolution. Although we do not find an unambiguous chemical signature of planet formation among our sample, the high-precision chemical abundances of the host stars are essential for constraining the composition and structure of their exoplanets.
The Sun has been found to be depleted in refractory (rock-forming) elements relative to nearby solar analogs, suggesting a potential indicator of planet formation. Given the small amplitude of the depletion, previous analyses have primarily relied on high signal-to-noise stellar spectra and a strictly differential approach to determine elemental abundances. We present an alternative, likelihood-based approach that can be applied to much larger samples of stars with lower precision abundance determinations. We utilize measurements of about 1700 solar analogs from the Apache Point Observatory Galactic Evolution Experiment (APOGEE-2) and the stellar parameter and chemical abundance pipeline (ASPCAP DR16). By developing a hierarchical mixture model for the data, we place constraints on the statistical properties of the elemental abundances, including correlations with condensation temperature and the fraction of stars with refractory element depletions. We find evidence for two distinct populations: a depleted population of stars that makes up the majority of solar analogs including the Sun, and a not-depleted population that makes up between 10-30% of our sample. We find correlations with condensation temperature generally in agreement with higher precision surveys of a smaller sample of stars. Such trends, if robustly linked to the formation of planetary systems, provide a means to connect stellar chemical abundance patterns to planetary systems over large samples of Milky Way stars.
The aim of this work is to shed some light on the problem of the formation of carbon stars of R-type from a detailed study of their chemical composition. We use high-resolution and high signal-to-noise optical spectra of 23 R-type stars selected from the Hipparcos catalogue. The chemical analysis is made using spectral synthesis in LTE and state-of-the-art carbon-rich spherical model atmospheres. We derive their CNO content (including the carbon isotopic ratio), average metallicity, lithium, and light (Sr, Y, Zr) and heavy (Ba, La, Nd, Sm) s-element abundances. The observed properties of the stars (galactic distribution, kinematics, binarity, photometry and luminosity) are also discussed. Our analysis shows that late-R stars are carbon stars with identical chemical and observational characteristics than the normal (N-type) AGB carbon stars. We confirm the results of the sole previous abundance analysis of early-R stars by Dominy (1984, ApJS, 55, 27), namely: they are carbon stars with near solar metallicity showing enhanced nitrogen, low carbon isotopic ratios and no s-element enhancements. In addition, we have found that early-R stars have Li abundances larger than expected for post RGB tip giants. We also find that a significant number (aprox. 40 %) of the early-R stars in our sample are wrongly classified, being probably classical CH stars and normal K giants. In consequence, we suggest that the number of true R stars is considerably lower than previously believed. We briefly discuss the different scenarios proposed for the formation of early-R stars. The mixing of carbon during an anomalous He-flash is favoured, although no physical mechanism able to trigger that mixing has been found yet. The origin of these stars still remains a mystery.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا