ترغب بنشر مسار تعليمي؟ اضغط هنا

Revising the ages of planet-hosting stars

157   0   0.0 ( 0 )
 نشر من قبل Andrea Bonfanti
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This article aims to measure the age of planet-hosting stars (SWP) through stellar tracks and isochrones computed with the textsl{PA}dova & Ttextsl{R}ieste textsl{S}tellar textsl{E}volutionary textsl{C}ode (PARSEC). We developed algorithms based on two different techniques for determining the ages of field stars: emph{isochrone placement} and emph{Bayesian estimation}. Their application to a synthetic sample of coeval stars shows the intrinsic limits of each method. For instance, the Bayesian computation of the modal age tends to select the extreme age values in the isochrones grid. Therefore, we used the isochrone placement technique to measure the ages of 317 SWP. We found that $sim6%$ of SWP have ages lower than 0.5 Gyr. The age distribution peaks in the interval [1.5, 2) Gyr, then it decreases. However, $sim7%$ of the stars are older than 11 Gyr. The Sun turns out to be a common star that hosts planets, when considering its evolutionary stage. Our SWP age distribution is less peaked and slightly shifted towards lower ages if compared with ages in the literature and based on the isochrone fit. In particular, there are no ages below 0.5 Gyr in the literature.



قيم البحث

اقرأ أيضاً

103 - F. Liu , D. Yong , M. Asplund 2020
We present a line-by-line differential analysis of a sample of 16 planet hosting stars and 68 comparison stars using high resolution, high signal-to-noise ratio spectra gathered using Keck. We obtained accurate stellar parameters and high-precision r elative chemical abundances with average uncertainties in teff, logg, [Fe/H] and [X/H] of 15 K, 0.034 [cgs], 0.012 dex and 0.025 dex, respectively. For each planet host, we identify a set of comparison stars and examine the abundance differences (corrected for Galactic chemical evolution effect) as a function of the dust condensation temperature, tcond, of the individual elements. While we confirm that the Sun exhibits a negative trend between abundance and tcond, we also confirm that the remaining planet hosts exhibit a variety of abundance $-$ tcond trends with no clear dependence upon age, metallicity or teff. The diversity in the chemical compositions of planet hosting stars relative to their comparison stars could reflect the range of possible planet-induced effects present in these planet hosts, from the sequestration of rocky material (refractory poor), to the possible ingestion of planets (refractory rich). Other possible explanations include differences in the timescale, efficiency and degree of planet formation or inhomogeneous chemical evolution. Although we do not find an unambiguous chemical signature of planet formation among our sample, the high-precision chemical abundances of the host stars are essential for constraining the composition and structure of their exoplanets.
This work presents a homogeneous derivation of atmospheric parameters and iron abundances for a sample of giant and subgiant stars which host giant planets, as well as a control sample of subgiant stars not known to host giant planets. The analysis i s done using the same technique as for our previous analysis of a large sample of planet-hosting and control sample dwarf stars. A comparison between the distributions of [Fe/H] in planet-hosting main-sequence stars, subgiants, and giants within these samples finds that the main-sequence stars and subgiants have the same mean metallicity of <[Fe/H]> simeq +0.11 dex, while the giant sample is typically more metal poor, having an average metallicity of <[Fe/H]> = -0.06 dex. The fact that the subgiants have the same average metallicities as the dwarfs indicates that significant accretion of solid metal-rich material onto the planet-hosting stars has not taken place, as such material would be diluted in the evolution from dwarf to subgiant. The lower metallicity found for the planet-hosting giant stars in comparison with the planet-hosting dwarfs and subgiants is interpreted as being related to the underlying stellar mass, with giants having larger masses and thus, on average larger-mass protoplanetary disks. In core accretion models of planet formation, larger disk masses can contain the critical amount of metals necessary to form giant planets even at lower metallicities.
156 - I. Ramirez , S. Khanal , P.Aleo 2015
Using high-quality spectra of the twin stars in the XO-2 binary system, we have detected significant differences in the chemical composition of their photospheres. The differences correlate strongly with the elements dust condensation temperature. In XO-2N, volatiles are enhanced by about 0.015 dex and refractories are overabundant by up to 0.090 dex. On average, our error bar in relative abundance is 0.012 dex. We present an early metal-depletion scenario in which the formation of the gas giant planets known to exist around these stars is responsible for a 0.015 dex offset in the abundances of all elements while 20 M_Earth of non-detected rocky objects that formed around XO-2S explain the additional refractory-element difference. An alternative explanation involves the late accretion of at least 20 M_Earth of planet-like material by XO-2N, allegedly as a result of the migration of the hot Jupiter detected around that star. Dust cleansing by a nearby hot star as well as age or Galactic birthplace effects can be ruled out as valid explanations for this phenomenon.
The field of exoplanetary science is making rapid progress both in statistical studies of exoplanet properties as well as in individual characterization. As space missions provide an emerging picture of formation and evolution of exoplanetary systems , the search for habitable worlds becomes one of the fundamental issues to address. To tackle such a complex challenge, we need to specify the conditions favorable for the origin, development and sustainment of life as we know it. This requires the understanding of global (astrospheric) and local (atmospheric, surface and internal) environments of exoplanets in the framework of the physical processes of the interaction between evolving planet-hosting stars along with exoplanetary evolution over geological timescales, and the resulting impact on climate and habitability of exoplanets. Feedbacks between astrophysical, physico-chemical atmospheric and geological processes can only be understood through interdisciplinary studies with the incorporation of progress in heliophysics, astrophysics, planetary, Earth sciences, astrobiology, and the origin of life communities. The assessment of the impacts of host stars on the climate and habitability of terrestrial (exo)planets and potential exomoons around them may significantly modify the extent and the location of the habitable zone and provide new directions for searching for signatures of life. Thus, characterization of stellar ionizing outputs becomes an important task for further understanding the extent of habitability in the universe. The goal of this white paper is to identify and describe promising key research goals to aid the theoretical characterization and observational detection of ionizing radiation from quiescent and flaring upper atmospheres of planet hosts as well as properties of stellar coronal mass ejections and stellar energetic particle events.
88 - M. Catelan 2017
Much progress has been achieved in the age-dating of old stellar systems, and even of individual stars in the field, in the more than sixty years since the evolution of low-mass stars was first correctly described. In this paper, I provide an overvie w of some of the main methods that have been used in this context, and discuss some of the issues that still affect the determination of accurate ages for the oldest stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا