ﻻ يوجد ملخص باللغة العربية
Electron gases at the surfaces of (001), (110), and (111) oriented SrTiO3 (STO) have been created using Ar+-irradiation with fully metallic behavior and low-temperature-mobility as large as 5500 cm2V-1s-1, 1300 cm2V-1s-1 and 8600 cm2V-1s-1 for (001)-, (110)-, and (111)-surfaces, respectively. The in-plane anisotropic magnetoresistance (AMR) have been studied for the samples with the current along different crystal axis directions to subtract the Lorentz Force effect. The AMR shows features which coincide with the fixed orientations to the crystalline axes, with 4-fold, 2-fold and nearly-6-fold symmetries for (001)-, (110) and (111)-surfaces, respectively, independent of the current directions. These features are possibly caused by the polarization of spin orbit texture of the 2D Fermi surfaces. In addition, a 6-fold to 2-fold symmetry breaking for (111)-surfaces is observed. Our results demonstrate the effect of symmetry of two-dimensional electronic structure on the transport behaviors for the electron gases at STO surfaces.
In recent years, striking discoveries have revealed that two-dimensional electron liquids (2DEL) confined at the interface between oxide band-insulators can be engineered to display a high mobility transport. The recognition that only few interfaces
High mobility two-dimensional electron gases (2DEGs) underpin todays silicon based devices and are of fundamental importance for the emerging field of oxide electronics. Such 2DEGs are usually created by engineering band offsets and charge transfer a
Epitaxial perovskite (110) oriented SrIrO3 (SIO) thin films were grown by pulsed laser deposition on (110) oriented DyScO3 (DSO) substrates with various film thickness t (2 nm < t < 50 nm). All the films were produced with stoichiometric composition,
The discovery of two-dimensional electron gases (2DEGs) at the interface between two insulating complex oxides, such as LaAlO3 (LAO) or gamma-Al2O3 (GAO) epitaxially grown on SrTiO3 (STO) 1,2, provides an opportunity for developing all-oxide electron
We explore the interplay of electron-electron correlations and surface effects in the prototypical correlated insulating material, NiO. In particular, we compute the electronic structure, magnetic properties, and surface energies of the $(001)$ and $